Abstract
Graphene has gained tremendous attention in the field of photonics and electronics because of its numerous outstanding properties including zero bandgap, exceptionally high crystal and electronic quality, high mechanical strength, and electrical conductivity. At the cutting edge of technology, graphene oxide–molybdenum disulphide hybrid structures have drawn tremendous attention for the development of high efficiency infrared (IR) detectors, where MoS2 film is used for generation of photoelectrons, and reduced graphene oxide is used to enhance the carrier mobility. The production of graphene oxide (GO) in this work is done using a modified version of Hummer’s process, in which GO is thermally reduced for an hour at 350 °C to produce reduced graphene oxide (rGO). The appearance of X-ray diffraction peak, corresponding to (001) and (002) for GO and rGO, respectively confirms the crystalline nature of the materials. The Raman spectra of GO and rGO exhibit distinctive peaks located at 1,358 cm−1 and 1,597 cm−1, which correspond to the D bands and G bands, respectively. The layered structure of rGO is examined by scanning electron microscopy. On the other hand, MoS2 film was grown by the sulphonation of sputtered Mo film on silicon substrate. The characteristic peak of MoS2, corresponding to (002) plane, is observed around 2θ = 14.1° whereas Raman characteristic bands are observed at 386 cm−1 (E12g) and 408 cm−1 (A1g). Afterwards, rGO layer was deposited on MoS2 thin film. The highest current On/Off ratio of 45.8 was found under illumination of 1,060 nm IR source. Under illumination at a 1,060 nm IR wavelength, the device demonstrates a responsivity of 0.21 A W−1 and detectivity of 1.83 × 109 Jones.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Anurag Gartia: Research Methodology, Conceptualization, Sample Preparation, Experiment, Data Processing and Analysis, Writing and Preparation of Original Draft Diana Pradhan: Supervision, Research Methodology, Data Processing and Analysis, Conceptualization, Writing-reviewing and Editing. Kiran Kumar Sahoo: Research Methodology, Data Processing and Analysis, Writing-reviewing and Editing. Sameer Ranjan Biswal: Writing-reviewing and Editing. Somesh Sabat: Writing-reviewing and Editing. Jyoti Prakash Kar: Supervision, Research Methodology, Data Processing and Analysis, Conceptualization, Writing-reviewing and Editing.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This work was supported by science and engineering research board (SERB), New Delhi, India, project (CRG/2022/007034). The XRD (Rigaku, Ultima-IV) characterization facility is supported by FIST-DST project (SR/FIST/PSI-156/2010, Dated: 28/12/2010).
-
Data availability: The data sets used or analyzed in this study available from corresponding author on reasonable request.
References
1. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22 (35), 3906–3924. https://doi.org/10.1002/adma.201001068.Search in Google Scholar PubMed
2. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4 (9), 611–622. https://doi.org/10.1038/nphoton.2010.186.Search in Google Scholar
3. Xia, F.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast Graphene Photodetector. Nat. Nanotechnol. 2009, 4 (12), 839–843. https://doi.org/10.1038/nnano.2009.292.Search in Google Scholar PubMed
4. Mueller, T.; Xia, F.; Avouris, P. Graphene Photodetectors for High-Speed Optical Communications. Nat. Photonics 2010, 4 (5), 297–301. https://doi.org/10.1038/nphoton.2010.40.Search in Google Scholar
5. Wang, L.; Cheng, Y.; Liu, Z.; Yi, X.; Zhu, H.; Wang, G. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes. ACS Appl. Mater. Interfaces 2016, 8 (2), 1176–1183. https://doi.org/10.1021/acsami.5b09419.Search in Google Scholar PubMed
6. Xu, Y.; Cheng, C.; Du, S.; Yang, J.; Yu, B.; Luo, J.; Yin, W.; Li, E.; Dong, S.; Ye, P.; Duan, X. Contacts between Two- and Three-Dimensional Materials: Ohmic, Schottky, and P-N Heterojunctions. ACS Nano 2016, 10 (5), 4895–4919. https://doi.org/10.1021/acsnano.6b01842.Search in Google Scholar PubMed
7. Chowdhury, F. A.; Mochida, T.; Otsuki, J.; Alam, M. S. Thermally Reduced Solution-Processed Graphene Oxide Thin Film: An Efficient Infrared Photodetector. Chem. Phys. Lett. 2014, 593, 198–203. https://doi.org/10.1016/j.cplett.2014.01.012.Search in Google Scholar
8. Saxena, S.; Tyson, T. A.; Shukla, S.; Negusse, E.; Chen, H.; Bai, J. Investigation of Structural and Electronic Properties of Graphene Oxide. Appl. Phys. Lett. 2011, 99 (1), 5–8. https://doi.org/10.1063/1.3607305.Search in Google Scholar
9. Lahaye, R. J. W. E.; Jeong, H. K.; Park, C. Y.; Lee, Y. H. Density Functional Theory Study of Graphite Oxide for Different Oxidation Levels. Phys. Rev. B – Condens. Matter Mater. Phys. 2009, 79 (12), 1–8. https://doi.org/10.1103/PhysRevB.79.125435.Search in Google Scholar
10. Pearson, R. G. Hard and Soft Acid Bases. J. Am. Chem. Soc. 1963, 85 (22), 3533–3539.10.1021/ja00905a001Search in Google Scholar
11. Venugopal, G.; Krishnamoorthy, K.; Mohan, R.; Kim, S. J. An Investigation of the Electrical Transport Properties of Graphene-Oxide Thin Films. Mater. Chem. Phys. 2012, 132 (1), 29–33. https://doi.org/10.1016/j.matchemphys.2011.10.040.Search in Google Scholar
12. Compton, O. C.; Cranford, S. W.; Putz, K. W.; An, Z.; Brinson, L. C.; Buehler, M. J.; Nguyen, S. T. Tuning the Mechanical Properties of Graphene Oxide Paper and its Associated Polymer Nanocomposites by Controlling Cooperative Intersheet Hydrogen Bonding. ACS Nano 2012, 6 (3), 2008–2019. https://doi.org/10.1021/nn202928w.Search in Google Scholar PubMed
13. Hersam, M. C. Emerging Device Applications for Two-Dimensional Nanomaterial Heterostructures. In 2015 73rd Annual Device Research Conference (DRC), New Jersey, IEEE, 2015; p 209.10.1109/DRC.2015.7175638Search in Google Scholar
14. Zhao, G. Y.; Deng, H.; Tyree, N.; Guy, M.; Lisfi, A.; Peng, Q.; Yan, J. A.; Wang, C.; Lan, Y. Recent Progress on Irradiation-Induced Defect Engineering of Two-Dimensional 2H-MoS2 Few Layers. Appl. Sci. 2019, 9 (4). https://doi.org/10.3390/app9040678.Search in Google Scholar
15. Bhat, N. Tunable Steep Slope MoS2 Transistor. In 2018 IEEE International Conference on Semiconductor Electronics (ICSE), New Jersey, IEEE, 2018; p C1.10.1109/SMELEC.2018.8481317Search in Google Scholar
16. Del Alamo, J. A. Nanometre-Scale Electronics with III-V Compound Semiconductors. Nature 2011, 479 (7373), 317–323. https://doi.org/10.1038/nature10677.Search in Google Scholar PubMed
17. Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. Nat. Rev. Methods Prim. 2022, 2 (1). https://doi.org/10.1038/s43586-022-00151-5.Search in Google Scholar
18. Current, M. I. Process and Metrology Challenges for Nano-Scale Electronics. 2016 IEEE Work. Microelectron. Electron Devices, WMED 2016 2016, 1–5. https://doi.org/10.1109/WMED.2016.7458281.Search in Google Scholar
19. Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E. Progress, Challenges, and Opportunities in Two-Dimensional Materials beyond Graphene. ACS Nano 2013, 7 (4), 2898–2926. https://doi.org/10.1021/nn400280c.Search in Google Scholar PubMed
20. Novoselov, K. Beyond the Wonder Material. Phys. World 2009, 22 (8), 27–30. https://doi.org/10.1088/2058-7058/22/08/33.Search in Google Scholar
21. Moutaouakil, A. El.; Kang, H.-C.; Handa, H.; Fukidome, H.; Suemitsu, T.; Sano, E.; Suemitsu, M.; Otsuji, T. Room Temperature Logic Inverter on Epitaxial Graphene-On-Silicon Device. Jpn. J. Appl. Phys. 2011, 50 (7R), 070113. https://doi.org/10.7567/jjap.50.070113.Search in Google Scholar
22. Das, S. 2D materials for ubiquitous electronics, In 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), New Jersey, IEEE, 2018; pp 19–20.10.1109/EDTM.2018.8421456Search in Google Scholar
23. Yoo, G.; Lee, S.; Yoo, B.; Han, C.; Kim, S.; Oh, M. S. Electrical Contact Analysis of Multilayer MoS2 Transistor with Molybdenum Source/Drain Electrodes. IEEE Electron Device Lett. 2015, 36 (11), 1215–1218. https://doi.org/10.1109/LED.2015.2478899.Search in Google Scholar
24. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457 (7230), 706–710. https://doi.org/10.1038/nature07719.Search in Google Scholar PubMed
25. Ruan, G.; Sun, Z.; Peng, Z.; Tour, J. M. Growth of Graphene from Food, Insects, and Waste. ACS Nano 2011, 5 (9), 7601–7607. https://doi.org/10.1021/nn202625c.Search in Google Scholar PubMed
26. Lee, D. W.; Hong, T. K.; Kang, D.; Lee, J.; Heo, M.; Kim, J. Y.; Kim, B. S.; Shin, H. S. Highly Controllable Transparent and Conducting Thin Films Using Layer-By-Layer Assembly of Oppositely Charged Reduced Graphene Oxides. J. Mater. Chem. 2011, 21 (10), 3438–3442. https://doi.org/10.1039/c0jm02270e.Search in Google Scholar
27. Zhu, J.; He, J. Assembly and Benign Step-by-step Post-Treatment of Oppositely Charged Reduced Graphene Oxides for Transparent Conductive Thin Films with Multiple Applications. Nanoscale 2012, 4 (11), 3558–3566. https://doi.org/10.1039/c2nr30606a.Search in Google Scholar PubMed
28. Feng, H.; Cheng, R.; Zhao, X.; Duan, X.; Li, J. A Low-Temperature Method to Produce Highly Reduced Graphene Oxide. Nat. Commun. 2013, 4, 1537–1539. https://doi.org/10.1038/ncomms2555.Search in Google Scholar PubMed
29. Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H. M. Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. ACS Nano 2010, 4 (9), 5245–5252. https://doi.org/10.1021/nn1015506.Search in Google Scholar PubMed
30. Wang, X.; Zhi, L.; Müllen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8 (1), 323–327. https://doi.org/10.1021/nl072838r.Search in Google Scholar PubMed
31. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2008, 2 (3), 463–470. https://doi.org/10.1021/nn700375n.Search in Google Scholar PubMed
32. Eda, G.; Fanchini, G.; Chhowalla, M. Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material. Nat. Nanotechnol. 2008, 3 (5), 270–274. https://doi.org/10.1038/nnano.2008.83.Search in Google Scholar PubMed
33. Wu, Y.; Wang, B.; Ma, Y.; Huang, Y.; Li, N.; Zhang, F.; Chen, Y. Efficient and Large-Scale Synthesis of Few-Layered Graphene Using an Arc-Discharge Method and Conductivity Studies of the Resulting Films. Nano Res. 2010, 3 (9), 661–669. https://doi.org/10.1007/s12274-010-0027-3.Search in Google Scholar
34. Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. Adv. Mater. 2008, 20 (18), 3557–3561. https://doi.org/10.1002/adma.200800757.Search in Google Scholar
35. Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M. Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids. Carbon N. Y. 2010, 48 (15), 4466–4474. https://doi.org/10.1016/j.carbon.2010.08.006.Search in Google Scholar
36. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008, 3 (2), 101–105. https://doi.org/10.1038/nnano.2007.451.Search in Google Scholar PubMed
37. Kobayashi, T.; Kimura, N.; Chi, J.; Hirata, S.; Hobara, D. Channel-Length-Dependent Field-Effect Mobility and Carrier Concentration of Reduced Graphene Oxide Thin-Film Transistors. Small 2010, 6 (11), 1210–1215. https://doi.org/10.1002/smll.200902407.Search in Google Scholar PubMed
38. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Carfunkel, E.; Chhowalla, M. Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Adv. Funct. Mater. 2009, 19 (16), 2577–2583. https://doi.org/10.1002/adfm.200900166.Search in Google Scholar
39. Pradhan, D.; Ghosh, S. P.; Gartia, A.; Sahoo, K. K.; Bose, G.; Kar, J. P. Modulation of Microstructural and Electrical Properties of Rapid Thermally Synthesized MoS2 Thin Films by the Flow of H2 Gas. Superlattices Microstruct. 2020, 145. https://doi.org/10.1016/j.spmi.2020.106598.Search in Google Scholar
40. Pradhan, D.; Gartia, A.; Sahoo, K. K.; Kar, J. P. Modulation of Electronic Properties of MoS2 Thin Films by Benzyl Viologen Treatment for IR Detection. Solid State Commun. 2021, 340. https://doi.org/10.1016/j.ssc.2021.114518.Search in Google Scholar
41. Cao, N.; Zhang, Y. Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization. J. Nanomater. 2015, 2015. https://doi.org/10.1155/2015/168125.Search in Google Scholar
42. Sharma, V.; Jain, Y.; Kumari, M.; Gupta, R.; Sharma, S. K.; Sachdev, K. Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO) for Gas Sensing Application. Macromol. Symp. 2017, 376 (1), 1–5. https://doi.org/10.1002/masy.201700006.Search in Google Scholar
43. Abid; Sehrawat, P.; Islam, S. S.; Mishra, P.; Ahmad, S. Reduced Graphene Oxide (RGO) Based Wideband Optical Sensor and the Role of Temperature, Defect States and Quantum Efficiency. Sci. Rep. 2018, 8 (1), 1–13. https://doi.org/10.1038/s41598-018-21686-2.Search in Google Scholar PubMed PubMed Central
44. Khai, T. V.; Long, L. N.; Phong, M. T.; Kien, P. T.; Thang, L. V.; Lam, T. D. Synthesis and Optical Properties of MoS2/Graphene Nanocomposite. J. Electron. Mater. 2020, 49 (2), 969–979. https://doi.org/10.1007/s11664-019-07670-0.Search in Google Scholar
45. Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Lett. 2009, 9 (4), 1593–1597. https://doi.org/10.1021/nl803798y.Search in Google Scholar PubMed
46. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-Throughput Solution Processing of Large-Scale Graphene. Nat. Nanotechnol. 2009, 4 (1), 25–29. https://doi.org/10.1038/nnano.2008.329.Search in Google Scholar PubMed
47. Yang, H.; Cao, Y.; He, J.; Zhang, Y.; Jin, B.; Sun, J. L.; Wang, Y.; Zhao, Z. Highly Conductive Free-Standing Reduced Graphene Oxide Thin Films for Fast Photoelectric Devices. Carbon N. Y. 2017, 115, 561–570. https://doi.org/10.1016/j.carbon.2017.01.047.Search in Google Scholar
48. Tode, M.; Takigawa, Y.; Iguchi, T.; Matsuura, H.; Ohmukai, M.; Sasaki, W. Removal of Carbon Contamination on Si Wafers with an Excimer Lamp. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2007, 38 (3), 596–598. https://doi.org/10.1007/s11661-007-9104-y.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde