Abstract
Al matrix composites are the most promising candidate for light-weight components in the aerospace and automotive industries. Graphene has numerous applications across various fields due to its exceptional mechanical, electrical, and thermal properties. The incorporation of graphene into aluminium (Al) matrix composites shows significantly improved mechanical and physical properties compared with pure Al. This review article summarizes the properties and applications of graphene in various areas. This article covers the processing route and effect of different fractions of graphene in aluminium matrix. Moreover, the article evaluates the advancement in mechanical and microstructural properties in Al/graphene composites with various fractions of graphene content.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. https://doi.org/10.1126/science.1102896.Search in Google Scholar PubMed
2. Slonczewski, J. C.; Weiss, P. R. Band Structure of Graphite. Phys. Rev. 1958, 109 (272). https://doi.org/10.1103/PhysRev.109.272.Search in Google Scholar
3. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6 (3), 183–191. https://doi.org/10.1038/nmat1849.Search in Google Scholar PubMed
4. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene Based Materials: Past, Present and Future. Progress Mater. Sci. 2011, 56, 1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003.Search in Google Scholar
5. Soldano, C.; Mahmood, A.; Dujardin, E. Production, Properties and Potential of Graphene. Carbon 2010, 48, 2127–2150. https://doi.org/10.1016/j.carbon.2010.01.058.Search in Google Scholar
6. Johnson, P. J.; Setsuda, D. J.; Williams, R. S. In Carbon Materials for Advanced Technology; Burchell, T. D., Ed.; Pergamon: Amsterdam, 1999; pp. 235–2687.10.1016/B978-008042683-9/50010-8Search in Google Scholar
7. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly Conducting Graphene Sheets and Langmuir-Blodgett Films. Nat. Nanotechnol. 2008 (9), 538–542. https://doi.org/10.1038/nnano.2008.210.Search in Google Scholar PubMed
8. Güler, Ö.; Güler, S.; Selen, H. V.; Albayrak, M. G.; Evin, E. Production of Graphene Layer by Liquid-phase Exfoliation with Low Sonication Power and Sonication Time from Synthesized Expanded Graphite. Fuller. Nanotub. Carb. Nanostruct. 2016, 24, 123–127. https://doi.org/10.1080/1536383X.2015.1114472.Search in Google Scholar
9. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1191–1196. https://doi.org/10.1126/science.1125925.Search in Google Scholar PubMed
10. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y.; Kim, Y. J.; Kim, K. S.; Özyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574–578. https://doi.org/10.1038/nnano.2010.132.Search in Google Scholar PubMed
11. Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of Graphene from Solid Carbon Sources. Nature 2010, 468, 549–552. https://doi.org/10.1038/nature09579.Search in Google Scholar PubMed
12. Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Penicaud, A. Solutions of Negatively Charged Graphene Sheets and Ribbons. J. Am. Chem. Soc. 2008, 130, 15802–15804. https://doi.org/10.1021/ja808001a.Search in Google Scholar PubMed
13. Mai, T. T.; Thuc, C. N. H.; Thuc, H. H. Preparation of Graphene Nano-Layer by Chemical Graphitization of Graphite Oxide from Exfoliation and Preliminary Reduction. Fuller. Nanotub. Carb. Nanostruct. 2015, 23, 742–749. https://doi.org/10.1080/1536383X.2014.986800.Search in Google Scholar
14. Cataldo, F.; Ursini, O.; Angelini, G. Graphite Oxide and Graphene Nanoribbons Reduction with Hydrogen Iodide. Fuller. Nanotub. Carb. Nanostruct. 2011, 19, 461–468. https://doi.org/10.1080/1536383X.2010.481064.Search in Google Scholar
15. Güler, S. H.; Güler, Ö.; Evin, E. The Production of Graphene Nano Layers by Using Milling-Exfoliation Hybrid Process. Fuller. Nanotub. Carb. Nanostruct. 2017, 25, 34–39. https://doi.org/10.1080/1536383X.2016.1244531.Search in Google Scholar
16. Esawi, A.; Morsi, K.; Sayed, A.; Taher, M.; Lanka, S. Effect of Carbon Nanotube (CNT) Content on the Mechanical Properties of CNT-Reinforced Aluminium Composites. Compos. Sci. Technol. 2010, 70, 2237–2241. https://doi.org/10.1016/j.compscitech.2010.05.004.Search in Google Scholar
17. Reboul, M.; Baroux, B. Metallurgical Aspects of Corrosion Resistance of Aluminium Alloys. Mater. Corros. 2011, 62, 215–233. https://doi.org/10.1002/maco.201005650.Search in Google Scholar
18. Rawal, S. P. Metal-matrix Composites for Space Applications. JOM 2001, 53, 14–17. https://doi.org/10.1007/s11837-001-0139-z.Search in Google Scholar
19. Molina, J. M.; Rhême, M.; Carron, J.; Weber, L. Thermal Conductivity of Aluminium Matrix Composites Reinforced with Mixtures of Diamond and SiC Particles. Scripta. Mater. 2008, 58, 393–396. https://doi.org/10.1016/j.scriptamat.2007.10.020.Search in Google Scholar
20. Recoules, V.; Renaudin, P.; Clérouin, J.; Noiret, P.; Zérah, G. Electrical Conductivity of Hot Expanded Aluminium: Experimental Measurements and Ab Initio Calculations. Phys. Rev. E 2002, 66, 0564127. https://doi.org/10.1103/PhysRevE.66.056412.Search in Google Scholar PubMed
21. Ghasali, E.; Pakseresht, A.; Safari-Kooshali, F.; Agheli, M.; Ebadzadeh, T. Investigation on Microstructure and Mechanical Behaviour of Al–ZrB2 Composite Prepared by Microwave and Spark Plasma Sintering. Mater. Sci. Eng. A 2015, 627, 27–30. https://doi.org/10.1016/j.msea.2014.12.096.Search in Google Scholar
22. Omrani, E.; Moghadam, A. D.; Menezes, P. L.; Rohatgi, P. K. Influences of Graphite Reinforcement on the Tribological Properties of Self-Lubricating Aluminium Matrix Composites for Green Tribology, Sustainability, and Energy Efficiency—A Review. Int. J. Adv. Manuf. Technol. 2016, 83, 325–346. https://doi.org/10.1007/s00170-015-7528-x.Search in Google Scholar
23. Li, J.; Xiong, Y.; Wang, X.; Yan, S.; Yang, C.; He, W.; Chen, J.; Wang, S.; Zhang, X.; Dai, S. Microstructure and Tensile Properties of Bulk Nanostructured Aluminium/graphene Composites Prepared via Cryomilling. Mater. Sci. Eng. A 2015, 626, 400–405. https://doi.org/10.1016/j.msea.2014.12.102.Search in Google Scholar
24. Khobragade, N.; Sikdar, K.; Kumar, B.; Bera, S.; Roy, D. Mechanical and Electrical Properties of Copper-Graphene Nanocomposite Fabricated by High Pressure Torsion. J. Alloys Compd. 2019, 776, 123–132. https://doi.org/10.1016/j.jallcom.2018.10.139.Search in Google Scholar
25. Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-Temperature Quantum Hall Effect in Graphene, Room-Temperature Quantum Hall Effect in Graphene. Science 2007, 315, 1379. https://doi.org/10.1126/science.1137201.Search in Google Scholar PubMed
26. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351. https://doi.org/10.1016/j.ssc.2008.02.024.Search in Google Scholar
27. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant Intrinsic Carrier Mobilities in Graphene and its Bilayer. Phys. Rev. Lett. 2008, 100, 016602. https://doi.org/10.1103/PhysRevLett.100.016602.Search in Google Scholar PubMed
28. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. https://doi.org/10.1126/science.1157996.Search in Google Scholar PubMed
29. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902. https://doi.org/10.1021/nl0731872.Search in Google Scholar PubMed
30. Cai, W.; Zhu, Y.; Li, X.; Piner, R. D.; Ruoff, R. S. Large Area Few-Layer Graphene/graphite Films as Transparent Thin Conducting Electrodes. Appl. Phys. Lett. 2009, 95, 123115. https://doi.org/10.1063/1.3220807.Search in Google Scholar
31. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9, 4359. https://doi.org/10.1021/nl902623y.Search in Google Scholar PubMed
32. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710. https://doi.org/10.1038/nature07719.Search in Google Scholar PubMed
33. Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic Solar Cells with Solution-Processed Graphene Transparent Electrodes. Appl. Phys. Lett. 2008, 92, 263302–263304. https://doi.org/10.1063/1.2924771.Search in Google Scholar
34. Wang, X.; Zhi, L.; Tsao, N.; Tomović, Ž.; Li, J.; Müllen, K. Transparent Carbon Films as Electrode in Organic Solar Cells. Angewandte. Chemie. Int. Edn. 2008, 47, 990–2992. https://doi.org/10.1002/anie.200704909.Search in Google Scholar PubMed
35. Chen, Z.; Zhao, J.; Cao, J.; Zhao, Y.; Huang, J.; Zheng, Z.; Li, W.; Jiang, S.; Qiao, J.; Xing, B.; Zhang, J. Opportunities for Graphene, Single-Walled and Multi-Walled Carbon Nanotube Applications in Agriculture: A Review. Crop Design 2022, 1, 100006. https://doi.org/10.1016/j.cropd.2022.100006.Search in Google Scholar
36. Seraj, S.; Mohammadi, T.; Tofighy, M. A. Graphene-based Membranes for Membrane Distillation Applications: A Review. J. Environ. Chem. Eng. 2022, 10 (3), 107974. https://doi.org/10.1016/j.jece.2022.107974.Search in Google Scholar
37. Krishnan, S. K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H. S. A Review on Graphene-Based Nanocomposites for Electrochemical and Fluorescent Biosensors. RSC Adv. 2019, 9, 8778–8781. https://doi.org/10.1039/C8RA09577A.Search in Google Scholar
38. Yildiz, G.; Warberg, M. B.; Awaja, F. Graphene and Graphene Oxide for Bio-Sensing: General Properties and the Effects of Graphene Ripples. Acta Biomater. 2021, 131, 62–79. https://doi.org/10.1016/j.actbio.2021.06.047.Search in Google Scholar PubMed
39. Aiswaria, P.; Mohamed, S. N.; Singaravelu, D. L.; Brindhadevi, K.; Pugazhendhi, A. A Review on Graphene/Graphene Oxide Supported Electrodes for Microbial Fuel Cell Applications: Challenges and Prospects. Chemosphere 2022, 296, 133983. https://doi.org/10.1016/j.chemosphere.2022.133983.Search in Google Scholar PubMed
40. Nturanabo, F.; Masu, L.; Kirabira, J. B. Novel Applications of Aluminium Metal Matrix Composites. Aluminium Alloys and Composites. Intech Open 2020, 1–24. https://doi.org/10.5772/intechopen.86225.Search in Google Scholar
41. Anish, R.; Singh, G. R.; Sivapragash, M. Techniques for Processing Metal Matrix Composite: A Survey. Procedia Eng. 2012, 38, 3846–3854. https://doi.org/10.1016/j.proeng.2012.06.441.Search in Google Scholar
42. Radha, A.; Vijayakumar, K. R. An Investigation of Mechanical and Wear Properties of AA6061 Reinforced with Silicon Carbide and Graphene Nano Particles-Particulate Composites. Mater. Today Proc. 2016, 3, 2247–2253. https://doi.org/10.1016/j.matpr.2016.04.133.Search in Google Scholar
43. Chak, V.; Chattopadhyay, H. Fabrication and Heat Treatment of Graphene Nanoplatelets Reinforced Aluminium Nanocomposites. Mate. Sci. Eng.: A 2020, 791, 139657. https://doi.org/10.1016/j.msea.2020.139657.Search in Google Scholar
44. Yu, H.; Zhang, S. Q.; Xia, J. H.; Su, Q.; Ma, B. C.; Wu, J. H.; Zhou, J. X.; Wang, X. T.; Hu, L. X. Microstructural Evolution, Mechanical and Physical Properties of Graphene Reinforced Aluminium Composites Fabricated via Powder Metallurgy. Mate. Sci. Eng.: A 2021, 802, 140669. https://doi.org/10.1016/j.msea.2020.140669.Search in Google Scholar
45. Zheng, Z.; Yang, X.; Li, J.; Zhang, X.; Muhammad, I.; Gen, L. Preparation and Properties of Graphene Nanoplatelets Reinforced Aluminium Composites. Trans. Nonferrous Met. Soc. China 2021, 31, 878–886. https://doi.org/10.1016/S1003-6326(21)65546-2.Search in Google Scholar
46. Jiang, Y.; Tan, Z.; Xu, R.; Fan, G.; Xiong, D. B.; Guo, Q.; Su, Y.; Li, Z.; Zhang, D. Tailoring the Structure and Mechanical Properties of Graphene Nanosheet/aluminium Composites by Flake Powder Metallurgy via Shift-Speed Ball Milling. Comp. Part A: Appl. Sci. Manuf. 2018, 111, 73–82. https://doi.org/10.1016/j.compositesa.2018.05.022.Search in Google Scholar
47. Bartolucci, S. F.; Paras, J.; Rafiee, M. A.; Rafiee, J.; Lee, S.; Kapoor, D.; Koratkar, N. Graphene–aluminium Nanocomposites. Mater. Sci. Eng., A 2011, 528, 7933–7937. https://doi.org/10.1016/j.msea.2011.07.043.Search in Google Scholar
48. Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with Graphene Nanosheets in Aluminium Matrix Composites. Scr. Mater. 2012, 66, 594–597. https://doi.org/10.1016/j.scriptamat.2012.01.012.Search in Google Scholar
49. Jeon, C. H.; Jeong, Y. H.; Seo, J. J.; Tien, H. N.; Hong, S. T.; Yum, Y. J.; Hur, S. H.; Lee, K. J. Material Properties of Graphene/Aluminium Metal Matrix Composites Fabricated by Friction Stir Processing. Int. J. Precision Eng. Manuf. 2014, 15 (6), 1235–1239. https://doi.org/10.1007/s12541-014-0462-2.Search in Google Scholar
50. Bustamante, R. P.; Morales, D. B.; Martínez, J. B.; Guel, I. E.; Sánchez, R. M. Microstructural and Hardness Behavior of Graphene-Nanoplatelets/Aluminium Composites Synthesized by Mechanical Alloying. J. Alloys Compd. 2014, 615, S578–S582. https://doi.org/10.1016/j.jallcom.2014.01.225.Search in Google Scholar
51. Zhao, L.; Lu, H.; Gao, Z. Microstructure and Mechanical Properties of Al/Graphene Composite Produced by High-Pressure Torsion. Adv. Eng. Mater. 2014, 17 (7), 1–6. https://doi.org/10.1002/adem.201400375.Search in Google Scholar
52. Li, J. L.; Xiong, Y. C.; Wang, X. D.; Yan, S. J.; Yang, C.; He, W. W.; Chen, J. Z.; Wang, S. Q.; Zhang, X. Y.; Dai, S. L. Microstructure and Tensile Properties of Bulk Nanostructured Aluminium/graphene Composites Prepared via Cryomilling. Mater. Sci. Eng. A 2015, 626, 400–405. https://doi.org/10.1016/j.msea.2014.12.102.Search in Google Scholar
53. Shin, S. E.; Choi, H. J.; Shin, J. H.; Bae, D. H. Strengthening Behavior of Few-Layered Graphene/aluminium Composites. Carbon 2015, 82, 143–151. https://doi.org/10.1016/j.carbon.2014.10.044.Search in Google Scholar
54. Choi, H. J.; Shin, J. H.; Bae, D. H. Grain Size Effect on the Strengthening Behavior of Aluminium-Based Composites Containing Multi-Walled Carbon Nanotubes. Compos. Sci. Technol. 2011, 71 (15), 1699–1705. https://doi.org/10.1016/j.compscitech.2011.07.013.Search in Google Scholar
55. Shin, S. E.; Bae, D. H. Deformation Behavior of Aluminium Alloy Matrix Composites Reinforced with Few-Layer Graphene. Composites: Part A 2015, 78, 42–47. https://doi.org/10.1016/j.compositesa.2015.08.001.Search in Google Scholar
56. Boostani, A. F.; Yazdani, S.; Mousavian, R. T.; Tahamtan, S.; Khosroshahi, R. A.; Wei, D.; Brabazon, D.; Xu, J. Z.; Zhang, X. M.; Jiang, Z. Y. Strengthening Mechanisms of Graphene Sheets in Aluminium Matrix Nanocomposites. Mater. Des. 2015, 88, 983–989. https://doi.org/10.1016/j.matdes.2015.09.063.Search in Google Scholar
57. Boostani, A. F.; Tahamtan, S.; Jiang, Z. Y.; Wei, D.; Yazdani, S.; Khosroshahi, R. A.; Mousavian, R. T.; Xu, J.; Zhang, X.; Gong, D. Enhanced Tensile Properties of Aluminium Matrix Composites Reinforced with Graphene Encapsulated SiC Nanoparticles. Composites: Part A 2015, 68, 155–163. https://doi.org/10.1016/j.compositesa.2014.10.010.Search in Google Scholar
58. Rashada, M.; Pana, F.; Yua, Z.; Asif, M.; Lina, H.; Pan, R. Investigation on Microstructural, Mechanical and Electrochemical Properties of Aluminium Composites Reinforced with Graphene Nanoplatelets. Prog. Nat. Sci.: Mater. Inter. 2015, 25, 460–470. https://doi.org/10.1016/j.pnsc.2015.09.005.Search in Google Scholar
59. Kumar, H. G. P.; Xavior, M. A. Fatigue and Wear Behavior of Al6061–Graphene Composites Synthesized by Powder Metallurgy. Trans. Indian Inst. Met. 2016, 69 (2), 415–419. https://doi.org/10.1007/s12666-015-0780-9.Search in Google Scholar
60. Gao, X.; Yue, H.; Guo, E.; Zhang, H.; Lin, X.; Yao, L.; Wang, B. Preparation and Tensile Properties of Homogeneously Dispersed Graphene Reinforced Aluminium Matrix Composites. Mater. Des. 2016, 94, 54–60. https://doi.org/10.1016/j.matdes.2016.01.034.Search in Google Scholar
61. Yolshina, L. A.; Muradymov, R. V.; Korsun, I. V.; Yakovlev, G. A.; Smirnov, S. V. Novel Aluminium-Graphene and Aluminium-Graphite Metallic Composite Materials: Synthesis and Properties. J. Alloys Compd. 2016, 663, 449–459. https://doi.org/10.1016/j.jallcom.2015.12.084.Search in Google Scholar
62. Liu, J.; Khan, U.; Coleman, J.; Fernandez, B.; Rodriguez, P.; Naher, S.; Brabazon, D. Graphene Oxide and Graphene Nanosheet Reinforced Aluminium Matrix Composites: Powder Synthesis and Prepared Composite Characteristics. Mater. Des. 2016, 94, 87–94. https://doi.org/10.1016/j.matdes.2016.01.031.Search in Google Scholar
63. Ju, J. M.; Wang, G.; Sim, K. H. Facile Synthesis of Graphene Reinforced Al Matrix Composites with Improved Dispersion of Graphene and Enhanced Mechanical Properties. J. Alloys Compd. 2017, 704, 585–592. https://doi.org/10.1016/j.jallcom.2017.01.314.Search in Google Scholar
64. Borand, G.; Uzunsoy, D. Fabrication of Functionally Graded Few-Layered Graphene Reinforced Al-4.5Cu Alloy by Powder Metallurgy. J. Alloys Compd. 2022, 923, 166348. https://doi.org/10.1016/j.jallcom.2022.166348.Search in Google Scholar
65. Lopez, J. J.; Williams, M. B.; Rushing, T. W.; Confer, M. P.; Ghosh, A.; Griggs, C. S.; Jordon, J. B.; Thompson, G. B.; Allison, P. G. A Solid-State Additive Manufacturing Method for Aluminium-Graphene Nanoplatelet Composites. Materialia 2022, 23, 101440. https://doi.org/10.1016/j.mtla.2022.101440.Search in Google Scholar
66. Ju, B.; Yu, Z.; Gou, H.; Yang, W.; Chen, G.; Wu, G. Coordinated Matrix Deformation Induced Ductility in Multilayer Graphene/aluminium Composites. Carbon 2023, 202, 31–40. https://doi.org/10.1016/j.carbon.2022.10.034.Search in Google Scholar
67. Hu, Z.; Wu, Z.; Luo, S.; Wang, X.; Nian, Q.; Chen, Y.; Nagaumi, H. Large Scale Production of Graphene Aluminium Composites by Stir Casting: Process, Microstructure and Properties. J. Mater. Res. Technol. 2023, 27, 681–691. https://doi.org/10.1016/j.jmrt.2023.09.298.Search in Google Scholar
68. Latief, F. H.; Sherif, E. S. M.; Almajid, A. A.; Junaedi, H. Fabrication of Exfoliated Graphite Nanoplatelets-Reinforced Aluminium Composites and Evaluating Their Mechanical Properties and Corrosion Behavior. J Anal Appl Pyrol 2011, 92, 485–492. https://doi.org/10.1016/j.jaap.2011.09.003.Search in Google Scholar
69. Ali, Md.; Omar, A.; Zaidi, Md.; Salleh, H. H.; Shukor, Md.; Fadhlina, Md. I. Recent Development in Graphene-Reinforced Aluminium Matrix Composite: A Review. Rev. Adv. Mater. Sci. 2021, 60 (1), 801–817. https://doi.org/10.1515/rams-2021-0062.Search in Google Scholar
70. Luo, Y.; Huang, Y.; Wang, W.; Yu, S.; Quanfang, C. The Influence of Interface Products on the Mechanical and Electrical Properties of Graphene Aluminium Composites. Surf. Interf. 2024, 46, 104164. https://doi.org/10.1016/j.surfin.2024.104164.Search in Google Scholar
71. Yang, S.; Gao, X.; Li, W.; Dai, Y.; Zhang, J.; Zhang, X.; Yue, H. Effects of the Graphene Content on Mechanical Properties and Corrosion Resistance of Aluminium Matrix Composite. J. Mater. Res. Technol. 2024, 28, 1900–1906. https://doi.org/10.1016/j.jmrt.2023.12.059.Search in Google Scholar
72. Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with Graphene Nanosheets in Aluminium Matrix Composites. Scripta. Mater. 2012, 66, 594–597. https://doi.org/10.1016/j.scriptamat.2012.01.012.Search in Google Scholar
73. Li, Z.; Fan, G.; Tan, Z.; Guo, Q.; Xiong, D.; Su, Y.; Zhang, D. Uniform Dispersion of Graphene Oxide in Aluminium Powder by Direct Electrostatic Adsorption for Fabrication of Graphene/Aluminium Composites. Nanotechnology 2014, 25, 325601. https://doi.org/10.1088/0957-4484/25/32/325601.Search in Google Scholar PubMed
74. Rashad, M.; Pan, F.; Tang, A.; Asif, M.; Hussain, S.; Gou, J.; Mao, J. Improved Strength and Ductility of Magnesium with Addition of Aluminium and Graphene Nanoplatelets (Al + GNPs) Using Semi Powder Metallurgy Method. J. Ind. Eng. Chem. 2015, 23, 243–250. https://doi.org/10.1016/j.jiec.2014.08.024.Search in Google Scholar
75. Li, Z.; Guo, Q.; Li, Z.; Fan, G.; Xiong, D. B.; Su, Y.; Zhang, D. Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminium Composites with a Bioinspired Nanolaminated Structure. Nano Lett. 2015, 15 (12), 8077–8083. https://doi.org/10.1021/acs.nanolett.5b03492.Search in Google Scholar PubMed
76. Tabandeh-Khorshid, M.; Omrani, E.; Menezes, P. L.; Rohatgi, P. K. Tribological Performance of Self-Lubricating Aluminium Matrix Nanocomposites: Role of Graphene Nanoplatelets. Eng. Sci. Technol. - Int. J. Jestech. 2016, 19, 463–469. https://doi.org/10.1016/j.jestch.2015.09.005.Search in Google Scholar
77. Alrasheedi, N. H. Facile Synthesis and Characterization of Aluminium/Graphene Nanosheets Composites. Arabian J. Sci. Eng. 2016, 41 (11), 4391–4395. https://doi.org/10.1007/s13369-015-1894-4.Search in Google Scholar
78. Alipour, M.; Farsani, R. E. Synthesis and Characterization of Graphene Nanoplatelets Reinforced AA7068 Matrix Nanocomposites Produced by Liquid Metallurgy Route. Mater. Sci. Eng. A. 2017, 706, 71–82. https://doi.org/10.1016/j.msea.2017.08.092.Search in Google Scholar
79. Zhang, Y.; Li, X. Bioinspired, Graphene/Al2O3 Doubly Reinforced Aluminium Composites with High Strength and Toughness. Nano Lett. 2017, 17, 6907–6915. https://doi.org/10.1021/acs.nanolett.7b03308.Search in Google Scholar PubMed
80. Kim, D.; Nam, S.; Roh, A.; Yoo, S.; Quevedo-Lopez, M.; Choi, H. Effect of Interfacial Features on the Mechanical and Electrical Properties of rGO/Al Composites. J. Mater. Sci. 2017, 52, 12001–12012. https://doi.org/10.1007/s10853-017-1282-4.Search in Google Scholar
81. Khan, M.; Amjad, M.; Khan, A.; Ud-Din, R.; Ahmad, I.; Subhani, T. Microstructural Evolution, Mechanical Profile, and Fracture Morphology of Aluminium Matrix Composites Containing Graphene Nanoplatelets. J. Mater. Res. 2017, 32, 2055–2066. https://doi.org/10.1557/jmr.2017.111.Search in Google Scholar
82. Gürbüz, M.; Can Şenel, M.; Koç, E. The Effect of Sintering Time, Temperature, and Graphene Addition on the Hardness and Microstructure of Aluminium Composites. J. Compos. Mater. 2017, 52 (4), 553–563. https://doi.org/10.1177/0021998317740200.Search in Google Scholar
83. Zhang, L.; Hou, G.; Zhai, W.; Ai, Q.; Feng, J.; Zhang, L.; Si, P.; Lijie, C. Aluminium/graphene Composites with Enhanced Heat-Dissipation Properties by In-Situ Reduction of Graphene Oxide on Aluminium Particles. J. Alloys Compd. 2018, 748, 854–860. https://doi.org/10.1016/j.jallcom.2018.03.237.Search in Google Scholar
84. Kumar, P. H. G.; Subramanian, P.; Xavior, M. A.; Sivapuram, K.; Lin, D.; Shukla, P.; Vijay, K. V. Enhanced Surface and Mechanical Properties of Bioinspired Nanolaminate Graphene-Aluminium Alloy Nanocomposites through Laser Shock Processing for Engineering Applications. Mater. Today Commun. 2018, 16, 81–89. https://doi.org/10.1016/j.mtcomm.2018.04.010.Search in Google Scholar
85. Li, D.; Ye, Y.; Liao, X.; Qin, Q. H. A Novel Method for Preparing and Characterizing Graphene Nanoplatelets/aluminium Nanocomposites. Nano Res. 2018, 11, 1642–1650. https://doi.org/10.1007/s12274-017-1779-9.Search in Google Scholar
86. Venkatesan, S.; Anthony Xavior, M. Tensile Behavior of Aluminium Alloy (AA7050) Metal Matrix Composite Reinforced with Graphene Fabricated by Stir and Squeeze Cast Processes. Sci. Technol. Mater. 2018, 30, 74–85. https://doi.org/10.1016/j.stmat.2018.02.005.Search in Google Scholar
87. Dixit, S.; Mahata, A.; Mahapatra, D. R.; Kailas, S. V.; Chattopadhyay, K. Multi-layer Graphene Reinforced Aluminium – Manufacturing of High Strength Composite by Friction Stir Alloying. Compos. Part B Eng. 2018, 136, 63–71. https://doi.org/10.1016/j.compositesb.2017.10.028.Search in Google Scholar
88. Liu, X.; Li, J.; Sha, J.; Liu, E.; Li, Q.; He, C.; Zhao, N. In-situ Synthesis of Graphene Nanosheets Coated Copper for Preparing Reinforced Aluminium Matrix Composites. Mate. Sci. Eng.: A 2018, 709, 65–71. https://doi.org/10.1016/j.msea.2017.10.030.Search in Google Scholar
89. Liu, X.; Li, J.; Liu, E.; He, C.; Shi, C.; Zhao, N. Towards Strength-Ductility Synergy with Favorable Strengthening Effect through the Formation of a Quasi-Continuous Graphene Nanosheets Coated Ni Structure in Aluminium Matrix Composite. Mater. Sci. Eng. A. 2019, 748, 52–58. https://doi.org/10.1016/j.msea.2019.01.046.Search in Google Scholar
90. Bhadauria, A.; Singh, L. K.; Laha, T. Combined Strengthening Effect of Nanocrystalline Matrix and Graphene Nanoplatelet Reinforcement on the Mechanical Properties of Spark Plasma Sintered Aluminium-Based Nanocomposites. Mater. Sci. Eng. A. 2019, 749, 14–26. https://doi.org/10.1016/j.msea.2019.02.007.Search in Google Scholar
91. Wang, J.; Guo, L.; Lin, W.; Chen, J.; Liu, C.; Chen, S.; Zhang, S.; Zhen, T. Effect of the Graphene Content on the Microstructures and Properties of Graphene/aluminium Composites. New Carb. Mater. 2019, 34 (3), 275–285. https://doi.org/10.1016/S1872-5805(19)60016-8.Search in Google Scholar
92. Xie, Y.; Meng, X.; Huang, Y.; Li, J.; Cao, J. Deformation-driven Metallurgy of Graphene Nanoplatelets Reinforced Aluminium Composite for the Balance between Strength and Ductility. Composites Part B 2019, 177, 107413. https://doi.org/10.1016/j.compositesb.2019.107413.Search in Google Scholar
93. Tiwari, J. K.; Mandal, A.; Rudra, A.; Sathish, N.; Kumar, S.; Singh, A. K. Influence of Graphene Content on the Mechanical Properties of Severely Deformed Graphene/aluminium Composite. Mater. Chem. Phys. 2020, 248, 122939. https://doi.org/10.1016/j.matchemphys.2020.122939.Search in Google Scholar
94. Zheng, Z.; Zhong, S.; Zhang, X.; Li, J.; Geng, L. Graphene Nano-Platelets Reinforced Aluminium Composites with Anisotropic Compressive Properties. Mater. Sci. Eng. A 2020, 798, 140234. https://doi.org/10.1016/j.msea.2020.140234.Search in Google Scholar
95. Kumar, R. V.; Harichandran, R.; Vignesh, U.; Thangavel, M.; Chandrasekhar, S. B. Influence of Hot Extrusion on Strain Hardening Behaviour of Graphene Platelets Dispersed Aluminium Composites. J. Alloys Compd. 2021, 855, 157448. https://doi.org/10.1016/j.jallcom.2020.157448.Search in Google Scholar
96. Guan, C.; Zhao, Y.; Chen, G.; Kai, X.; Qian, W.; Tao, R.; Huang, L.; Gao, X.; Jin, L. Synergistic Strengthening and Toughening of Copper Coated Graphene Nanoplates and In Situ Nanoparticles Reinforced AA6111 Composites. Mater. Sci. Eng. A 2021, 822, 141661. https://doi.org/10.1016/j.msea.2021.141661.Search in Google Scholar
97. Vogel, T.; Liu, Y.; Guo, Q.; Zhang, D. Strength-conductivity Synergy in Cold-Drawn Reduced Graphene Oxide (RGO) Aluminium Composite Wires for Electrical Applications. Mater. Des. 2021, 209, 109951. https://doi.org/10.1016/j.matdes.2021.109951.Search in Google Scholar
98. Wang, B.; Liu, J.; Yue, S.; Wang, X.; Zhang, Y.; Fu, Y.; Li, T.; Wang, T. Preparation of graphene/Al Composites with a Lamellar Structure by Silane Cross-Linking Graphene Oxide. J. Mater. Res. Technol. 2021, 13, 2433–2441. https://doi.org/10.1016/j.jmrt.2021.06.009.Search in Google Scholar
99. Khanna, V.; Kumar, V.; Bansal, S. A.; Prakash, C.; Ubaidullah, M.; Shaikh, S. M. F.; Pramanik, A.; Basak, A.; Shankar, S. Fabrication of Efficient Aluminium/graphene Nanosheets (Al-GNP) Composite by Powder Metallurgy for Strength Applications. J. Mater. Res. Technol. 2023, 22, 3402–3412. https://doi.org/10.1016/j.jmrt.2022.12.161.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde