Home A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
Article
Licensed
Unlicensed Requires Authentication

A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites

  • Nidhi Khobragade ORCID logo EMAIL logo and Debdas Roy
Published/Copyright: February 13, 2025
Become an author with De Gruyter Brill

Abstract

Al matrix composites are the most promising candidate for light-weight components in the aerospace and automotive industries. Graphene has numerous applications across various fields due to its exceptional mechanical, electrical, and thermal properties. The incorporation of graphene into aluminium (Al) matrix composites shows significantly improved mechanical and physical properties compared with pure Al. This review article summarizes the properties and applications of graphene in various areas. This article covers the processing route and effect of different fractions of graphene in aluminium matrix. Moreover, the article evaluates the advancement in mechanical and microstructural properties in Al/graphene composites with various fractions of graphene content.


Corresponding author: Nidhi Khobragade, Department of Metallurgical Engineering, OP Jindal University Punjipathra, Raigarh 496109, Chhattisgarh, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. https://doi.org/10.1126/science.1102896.Search in Google Scholar PubMed

2. Slonczewski, J. C.; Weiss, P. R. Band Structure of Graphite. Phys. Rev. 1958, 109 (272). https://doi.org/10.1103/PhysRev.109.272.Search in Google Scholar

3. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6 (3), 183–191. https://doi.org/10.1038/nmat1849.Search in Google Scholar PubMed

4. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene Based Materials: Past, Present and Future. Progress Mater. Sci. 2011, 56, 1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003.Search in Google Scholar

5. Soldano, C.; Mahmood, A.; Dujardin, E. Production, Properties and Potential of Graphene. Carbon 2010, 48, 2127–2150. https://doi.org/10.1016/j.carbon.2010.01.058.Search in Google Scholar

6. Johnson, P. J.; Setsuda, D. J.; Williams, R. S. In Carbon Materials for Advanced Technology; Burchell, T. D., Ed.; Pergamon: Amsterdam, 1999; pp. 235–2687.10.1016/B978-008042683-9/50010-8Search in Google Scholar

7. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly Conducting Graphene Sheets and Langmuir-Blodgett Films. Nat. Nanotechnol. 2008 (9), 538–542. https://doi.org/10.1038/nnano.2008.210.Search in Google Scholar PubMed

8. Güler, Ö.; Güler, S.; Selen, H. V.; Albayrak, M. G.; Evin, E. Production of Graphene Layer by Liquid-phase Exfoliation with Low Sonication Power and Sonication Time from Synthesized Expanded Graphite. Fuller. Nanotub. Carb. Nanostruct. 2016, 24, 123–127. https://doi.org/10.1080/1536383X.2015.1114472.Search in Google Scholar

9. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1191–1196. https://doi.org/10.1126/science.1125925.Search in Google Scholar PubMed

10. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y.; Kim, Y. J.; Kim, K. S.; Özyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574–578. https://doi.org/10.1038/nnano.2010.132.Search in Google Scholar PubMed

11. Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of Graphene from Solid Carbon Sources. Nature 2010, 468, 549–552. https://doi.org/10.1038/nature09579.Search in Google Scholar PubMed

12. Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Penicaud, A. Solutions of Negatively Charged Graphene Sheets and Ribbons. J. Am. Chem. Soc. 2008, 130, 15802–15804. https://doi.org/10.1021/ja808001a.Search in Google Scholar PubMed

13. Mai, T. T.; Thuc, C. N. H.; Thuc, H. H. Preparation of Graphene Nano-Layer by Chemical Graphitization of Graphite Oxide from Exfoliation and Preliminary Reduction. Fuller. Nanotub. Carb. Nanostruct. 2015, 23, 742–749. https://doi.org/10.1080/1536383X.2014.986800.Search in Google Scholar

14. Cataldo, F.; Ursini, O.; Angelini, G. Graphite Oxide and Graphene Nanoribbons Reduction with Hydrogen Iodide. Fuller. Nanotub. Carb. Nanostruct. 2011, 19, 461–468. https://doi.org/10.1080/1536383X.2010.481064.Search in Google Scholar

15. Güler, S. H.; Güler, Ö.; Evin, E. The Production of Graphene Nano Layers by Using Milling-Exfoliation Hybrid Process. Fuller. Nanotub. Carb. Nanostruct. 2017, 25, 34–39. https://doi.org/10.1080/1536383X.2016.1244531.Search in Google Scholar

16. Esawi, A.; Morsi, K.; Sayed, A.; Taher, M.; Lanka, S. Effect of Carbon Nanotube (CNT) Content on the Mechanical Properties of CNT-Reinforced Aluminium Composites. Compos. Sci. Technol. 2010, 70, 2237–2241. https://doi.org/10.1016/j.compscitech.2010.05.004.Search in Google Scholar

17. Reboul, M.; Baroux, B. Metallurgical Aspects of Corrosion Resistance of Aluminium Alloys. Mater. Corros. 2011, 62, 215–233. https://doi.org/10.1002/maco.201005650.Search in Google Scholar

18. Rawal, S. P. Metal-matrix Composites for Space Applications. JOM 2001, 53, 14–17. https://doi.org/10.1007/s11837-001-0139-z.Search in Google Scholar

19. Molina, J. M.; Rhême, M.; Carron, J.; Weber, L. Thermal Conductivity of Aluminium Matrix Composites Reinforced with Mixtures of Diamond and SiC Particles. Scripta. Mater. 2008, 58, 393–396. https://doi.org/10.1016/j.scriptamat.2007.10.020.Search in Google Scholar

20. Recoules, V.; Renaudin, P.; Clérouin, J.; Noiret, P.; Zérah, G. Electrical Conductivity of Hot Expanded Aluminium: Experimental Measurements and Ab Initio Calculations. Phys. Rev. E 2002, 66, 0564127. https://doi.org/10.1103/PhysRevE.66.056412.Search in Google Scholar PubMed

21. Ghasali, E.; Pakseresht, A.; Safari-Kooshali, F.; Agheli, M.; Ebadzadeh, T. Investigation on Microstructure and Mechanical Behaviour of Al–ZrB2 Composite Prepared by Microwave and Spark Plasma Sintering. Mater. Sci. Eng. A 2015, 627, 27–30. https://doi.org/10.1016/j.msea.2014.12.096.Search in Google Scholar

22. Omrani, E.; Moghadam, A. D.; Menezes, P. L.; Rohatgi, P. K. Influences of Graphite Reinforcement on the Tribological Properties of Self-Lubricating Aluminium Matrix Composites for Green Tribology, Sustainability, and Energy Efficiency—A Review. Int. J. Adv. Manuf. Technol. 2016, 83, 325–346. https://doi.org/10.1007/s00170-015-7528-x.Search in Google Scholar

23. Li, J.; Xiong, Y.; Wang, X.; Yan, S.; Yang, C.; He, W.; Chen, J.; Wang, S.; Zhang, X.; Dai, S. Microstructure and Tensile Properties of Bulk Nanostructured Aluminium/graphene Composites Prepared via Cryomilling. Mater. Sci. Eng. A 2015, 626, 400–405. https://doi.org/10.1016/j.msea.2014.12.102.Search in Google Scholar

24. Khobragade, N.; Sikdar, K.; Kumar, B.; Bera, S.; Roy, D. Mechanical and Electrical Properties of Copper-Graphene Nanocomposite Fabricated by High Pressure Torsion. J. Alloys Compd. 2019, 776, 123–132. https://doi.org/10.1016/j.jallcom.2018.10.139.Search in Google Scholar

25. Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-Temperature Quantum Hall Effect in Graphene, Room-Temperature Quantum Hall Effect in Graphene. Science 2007, 315, 1379. https://doi.org/10.1126/science.1137201.Search in Google Scholar PubMed

26. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351. https://doi.org/10.1016/j.ssc.2008.02.024.Search in Google Scholar

27. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant Intrinsic Carrier Mobilities in Graphene and its Bilayer. Phys. Rev. Lett. 2008, 100, 016602. https://doi.org/10.1103/PhysRevLett.100.016602.Search in Google Scholar PubMed

28. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. https://doi.org/10.1126/science.1157996.Search in Google Scholar PubMed

29. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902. https://doi.org/10.1021/nl0731872.Search in Google Scholar PubMed

30. Cai, W.; Zhu, Y.; Li, X.; Piner, R. D.; Ruoff, R. S. Large Area Few-Layer Graphene/graphite Films as Transparent Thin Conducting Electrodes. Appl. Phys. Lett. 2009, 95, 123115. https://doi.org/10.1063/1.3220807.Search in Google Scholar

31. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9, 4359. https://doi.org/10.1021/nl902623y.Search in Google Scholar PubMed

32. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710. https://doi.org/10.1038/nature07719.Search in Google Scholar PubMed

33. Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic Solar Cells with Solution-Processed Graphene Transparent Electrodes. Appl. Phys. Lett. 2008, 92, 263302–263304. https://doi.org/10.1063/1.2924771.Search in Google Scholar

34. Wang, X.; Zhi, L.; Tsao, N.; Tomović, Ž.; Li, J.; Müllen, K. Transparent Carbon Films as Electrode in Organic Solar Cells. Angewandte. Chemie. Int. Edn. 2008, 47, 990–2992. https://doi.org/10.1002/anie.200704909.Search in Google Scholar PubMed

35. Chen, Z.; Zhao, J.; Cao, J.; Zhao, Y.; Huang, J.; Zheng, Z.; Li, W.; Jiang, S.; Qiao, J.; Xing, B.; Zhang, J. Opportunities for Graphene, Single-Walled and Multi-Walled Carbon Nanotube Applications in Agriculture: A Review. Crop Design 2022, 1, 100006. https://doi.org/10.1016/j.cropd.2022.100006.Search in Google Scholar

36. Seraj, S.; Mohammadi, T.; Tofighy, M. A. Graphene-based Membranes for Membrane Distillation Applications: A Review. J. Environ. Chem. Eng. 2022, 10 (3), 107974. https://doi.org/10.1016/j.jece.2022.107974.Search in Google Scholar

37. Krishnan, S. K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H. S. A Review on Graphene-Based Nanocomposites for Electrochemical and Fluorescent Biosensors. RSC Adv. 2019, 9, 8778–8781. https://doi.org/10.1039/C8RA09577A.Search in Google Scholar

38. Yildiz, G.; Warberg, M. B.; Awaja, F. Graphene and Graphene Oxide for Bio-Sensing: General Properties and the Effects of Graphene Ripples. Acta Biomater. 2021, 131, 62–79. https://doi.org/10.1016/j.actbio.2021.06.047.Search in Google Scholar PubMed

39. Aiswaria, P.; Mohamed, S. N.; Singaravelu, D. L.; Brindhadevi, K.; Pugazhendhi, A. A Review on Graphene/Graphene Oxide Supported Electrodes for Microbial Fuel Cell Applications: Challenges and Prospects. Chemosphere 2022, 296, 133983. https://doi.org/10.1016/j.chemosphere.2022.133983.Search in Google Scholar PubMed

40. Nturanabo, F.; Masu, L.; Kirabira, J. B. Novel Applications of Aluminium Metal Matrix Composites. Aluminium Alloys and Composites. Intech Open 2020, 1–24. https://doi.org/10.5772/intechopen.86225.Search in Google Scholar

41. Anish, R.; Singh, G. R.; Sivapragash, M. Techniques for Processing Metal Matrix Composite: A Survey. Procedia Eng. 2012, 38, 3846–3854. https://doi.org/10.1016/j.proeng.2012.06.441.Search in Google Scholar

42. Radha, A.; Vijayakumar, K. R. An Investigation of Mechanical and Wear Properties of AA6061 Reinforced with Silicon Carbide and Graphene Nano Particles-Particulate Composites. Mater. Today Proc. 2016, 3, 2247–2253. https://doi.org/10.1016/j.matpr.2016.04.133.Search in Google Scholar

43. Chak, V.; Chattopadhyay, H. Fabrication and Heat Treatment of Graphene Nanoplatelets Reinforced Aluminium Nanocomposites. Mate. Sci. Eng.: A 2020, 791, 139657. https://doi.org/10.1016/j.msea.2020.139657.Search in Google Scholar

44. Yu, H.; Zhang, S. Q.; Xia, J. H.; Su, Q.; Ma, B. C.; Wu, J. H.; Zhou, J. X.; Wang, X. T.; Hu, L. X. Microstructural Evolution, Mechanical and Physical Properties of Graphene Reinforced Aluminium Composites Fabricated via Powder Metallurgy. Mate. Sci. Eng.: A 2021, 802, 140669. https://doi.org/10.1016/j.msea.2020.140669.Search in Google Scholar

45. Zheng, Z.; Yang, X.; Li, J.; Zhang, X.; Muhammad, I.; Gen, L. Preparation and Properties of Graphene Nanoplatelets Reinforced Aluminium Composites. Trans. Nonferrous Met. Soc. China 2021, 31, 878–886. https://doi.org/10.1016/S1003-6326(21)65546-2.Search in Google Scholar

46. Jiang, Y.; Tan, Z.; Xu, R.; Fan, G.; Xiong, D. B.; Guo, Q.; Su, Y.; Li, Z.; Zhang, D. Tailoring the Structure and Mechanical Properties of Graphene Nanosheet/aluminium Composites by Flake Powder Metallurgy via Shift-Speed Ball Milling. Comp. Part A: Appl. Sci. Manuf. 2018, 111, 73–82. https://doi.org/10.1016/j.compositesa.2018.05.022.Search in Google Scholar

47. Bartolucci, S. F.; Paras, J.; Rafiee, M. A.; Rafiee, J.; Lee, S.; Kapoor, D.; Koratkar, N. Graphene–aluminium Nanocomposites. Mater. Sci. Eng., A 2011, 528, 7933–7937. https://doi.org/10.1016/j.msea.2011.07.043.Search in Google Scholar

48. Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with Graphene Nanosheets in Aluminium Matrix Composites. Scr. Mater. 2012, 66, 594–597. https://doi.org/10.1016/j.scriptamat.2012.01.012.Search in Google Scholar

49. Jeon, C. H.; Jeong, Y. H.; Seo, J. J.; Tien, H. N.; Hong, S. T.; Yum, Y. J.; Hur, S. H.; Lee, K. J. Material Properties of Graphene/Aluminium Metal Matrix Composites Fabricated by Friction Stir Processing. Int. J. Precision Eng. Manuf. 2014, 15 (6), 1235–1239. https://doi.org/10.1007/s12541-014-0462-2.Search in Google Scholar

50. Bustamante, R. P.; Morales, D. B.; Martínez, J. B.; Guel, I. E.; Sánchez, R. M. Microstructural and Hardness Behavior of Graphene-Nanoplatelets/Aluminium Composites Synthesized by Mechanical Alloying. J. Alloys Compd. 2014, 615, S578–S582. https://doi.org/10.1016/j.jallcom.2014.01.225.Search in Google Scholar

51. Zhao, L.; Lu, H.; Gao, Z. Microstructure and Mechanical Properties of Al/Graphene Composite Produced by High-Pressure Torsion. Adv. Eng. Mater. 2014, 17 (7), 1–6. https://doi.org/10.1002/adem.201400375.Search in Google Scholar

52. Li, J. L.; Xiong, Y. C.; Wang, X. D.; Yan, S. J.; Yang, C.; He, W. W.; Chen, J. Z.; Wang, S. Q.; Zhang, X. Y.; Dai, S. L. Microstructure and Tensile Properties of Bulk Nanostructured Aluminium/graphene Composites Prepared via Cryomilling. Mater. Sci. Eng. A 2015, 626, 400–405. https://doi.org/10.1016/j.msea.2014.12.102.Search in Google Scholar

53. Shin, S. E.; Choi, H. J.; Shin, J. H.; Bae, D. H. Strengthening Behavior of Few-Layered Graphene/aluminium Composites. Carbon 2015, 82, 143–151. https://doi.org/10.1016/j.carbon.2014.10.044.Search in Google Scholar

54. Choi, H. J.; Shin, J. H.; Bae, D. H. Grain Size Effect on the Strengthening Behavior of Aluminium-Based Composites Containing Multi-Walled Carbon Nanotubes. Compos. Sci. Technol. 2011, 71 (15), 1699–1705. https://doi.org/10.1016/j.compscitech.2011.07.013.Search in Google Scholar

55. Shin, S. E.; Bae, D. H. Deformation Behavior of Aluminium Alloy Matrix Composites Reinforced with Few-Layer Graphene. Composites: Part A 2015, 78, 42–47. https://doi.org/10.1016/j.compositesa.2015.08.001.Search in Google Scholar

56. Boostani, A. F.; Yazdani, S.; Mousavian, R. T.; Tahamtan, S.; Khosroshahi, R. A.; Wei, D.; Brabazon, D.; Xu, J. Z.; Zhang, X. M.; Jiang, Z. Y. Strengthening Mechanisms of Graphene Sheets in Aluminium Matrix Nanocomposites. Mater. Des. 2015, 88, 983–989. https://doi.org/10.1016/j.matdes.2015.09.063.Search in Google Scholar

57. Boostani, A. F.; Tahamtan, S.; Jiang, Z. Y.; Wei, D.; Yazdani, S.; Khosroshahi, R. A.; Mousavian, R. T.; Xu, J.; Zhang, X.; Gong, D. Enhanced Tensile Properties of Aluminium Matrix Composites Reinforced with Graphene Encapsulated SiC Nanoparticles. Composites: Part A 2015, 68, 155–163. https://doi.org/10.1016/j.compositesa.2014.10.010.Search in Google Scholar

58. Rashada, M.; Pana, F.; Yua, Z.; Asif, M.; Lina, H.; Pan, R. Investigation on Microstructural, Mechanical and Electrochemical Properties of Aluminium Composites Reinforced with Graphene Nanoplatelets. Prog. Nat. Sci.: Mater. Inter. 2015, 25, 460–470. https://doi.org/10.1016/j.pnsc.2015.09.005.Search in Google Scholar

59. Kumar, H. G. P.; Xavior, M. A. Fatigue and Wear Behavior of Al6061–Graphene Composites Synthesized by Powder Metallurgy. Trans. Indian Inst. Met. 2016, 69 (2), 415–419. https://doi.org/10.1007/s12666-015-0780-9.Search in Google Scholar

60. Gao, X.; Yue, H.; Guo, E.; Zhang, H.; Lin, X.; Yao, L.; Wang, B. Preparation and Tensile Properties of Homogeneously Dispersed Graphene Reinforced Aluminium Matrix Composites. Mater. Des. 2016, 94, 54–60. https://doi.org/10.1016/j.matdes.2016.01.034.Search in Google Scholar

61. Yolshina, L. A.; Muradymov, R. V.; Korsun, I. V.; Yakovlev, G. A.; Smirnov, S. V. Novel Aluminium-Graphene and Aluminium-Graphite Metallic Composite Materials: Synthesis and Properties. J. Alloys Compd. 2016, 663, 449–459. https://doi.org/10.1016/j.jallcom.2015.12.084.Search in Google Scholar

62. Liu, J.; Khan, U.; Coleman, J.; Fernandez, B.; Rodriguez, P.; Naher, S.; Brabazon, D. Graphene Oxide and Graphene Nanosheet Reinforced Aluminium Matrix Composites: Powder Synthesis and Prepared Composite Characteristics. Mater. Des. 2016, 94, 87–94. https://doi.org/10.1016/j.matdes.2016.01.031.Search in Google Scholar

63. Ju, J. M.; Wang, G.; Sim, K. H. Facile Synthesis of Graphene Reinforced Al Matrix Composites with Improved Dispersion of Graphene and Enhanced Mechanical Properties. J. Alloys Compd. 2017, 704, 585–592. https://doi.org/10.1016/j.jallcom.2017.01.314.Search in Google Scholar

64. Borand, G.; Uzunsoy, D. Fabrication of Functionally Graded Few-Layered Graphene Reinforced Al-4.5Cu Alloy by Powder Metallurgy. J. Alloys Compd. 2022, 923, 166348. https://doi.org/10.1016/j.jallcom.2022.166348.Search in Google Scholar

65. Lopez, J. J.; Williams, M. B.; Rushing, T. W.; Confer, M. P.; Ghosh, A.; Griggs, C. S.; Jordon, J. B.; Thompson, G. B.; Allison, P. G. A Solid-State Additive Manufacturing Method for Aluminium-Graphene Nanoplatelet Composites. Materialia 2022, 23, 101440. https://doi.org/10.1016/j.mtla.2022.101440.Search in Google Scholar

66. Ju, B.; Yu, Z.; Gou, H.; Yang, W.; Chen, G.; Wu, G. Coordinated Matrix Deformation Induced Ductility in Multilayer Graphene/aluminium Composites. Carbon 2023, 202, 31–40. https://doi.org/10.1016/j.carbon.2022.10.034.Search in Google Scholar

67. Hu, Z.; Wu, Z.; Luo, S.; Wang, X.; Nian, Q.; Chen, Y.; Nagaumi, H. Large Scale Production of Graphene Aluminium Composites by Stir Casting: Process, Microstructure and Properties. J. Mater. Res. Technol. 2023, 27, 681–691. https://doi.org/10.1016/j.jmrt.2023.09.298.Search in Google Scholar

68. Latief, F. H.; Sherif, E. S. M.; Almajid, A. A.; Junaedi, H. Fabrication of Exfoliated Graphite Nanoplatelets-Reinforced Aluminium Composites and Evaluating Their Mechanical Properties and Corrosion Behavior. J Anal Appl Pyrol 2011, 92, 485–492. https://doi.org/10.1016/j.jaap.2011.09.003.Search in Google Scholar

69. Ali, Md.; Omar, A.; Zaidi, Md.; Salleh, H. H.; Shukor, Md.; Fadhlina, Md. I. Recent Development in Graphene-Reinforced Aluminium Matrix Composite: A Review. Rev. Adv. Mater. Sci. 2021, 60 (1), 801–817. https://doi.org/10.1515/rams-2021-0062.Search in Google Scholar

70. Luo, Y.; Huang, Y.; Wang, W.; Yu, S.; Quanfang, C. The Influence of Interface Products on the Mechanical and Electrical Properties of Graphene Aluminium Composites. Surf. Interf. 2024, 46, 104164. https://doi.org/10.1016/j.surfin.2024.104164.Search in Google Scholar

71. Yang, S.; Gao, X.; Li, W.; Dai, Y.; Zhang, J.; Zhang, X.; Yue, H. Effects of the Graphene Content on Mechanical Properties and Corrosion Resistance of Aluminium Matrix Composite. J. Mater. Res. Technol. 2024, 28, 1900–1906. https://doi.org/10.1016/j.jmrt.2023.12.059.Search in Google Scholar

72. Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with Graphene Nanosheets in Aluminium Matrix Composites. Scripta. Mater. 2012, 66, 594–597. https://doi.org/10.1016/j.scriptamat.2012.01.012.Search in Google Scholar

73. Li, Z.; Fan, G.; Tan, Z.; Guo, Q.; Xiong, D.; Su, Y.; Zhang, D. Uniform Dispersion of Graphene Oxide in Aluminium Powder by Direct Electrostatic Adsorption for Fabrication of Graphene/Aluminium Composites. Nanotechnology 2014, 25, 325601. https://doi.org/10.1088/0957-4484/25/32/325601.Search in Google Scholar PubMed

74. Rashad, M.; Pan, F.; Tang, A.; Asif, M.; Hussain, S.; Gou, J.; Mao, J. Improved Strength and Ductility of Magnesium with Addition of Aluminium and Graphene Nanoplatelets (Al + GNPs) Using Semi Powder Metallurgy Method. J. Ind. Eng. Chem. 2015, 23, 243–250. https://doi.org/10.1016/j.jiec.2014.08.024.Search in Google Scholar

75. Li, Z.; Guo, Q.; Li, Z.; Fan, G.; Xiong, D. B.; Su, Y.; Zhang, D. Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminium Composites with a Bioinspired Nanolaminated Structure. Nano Lett. 2015, 15 (12), 8077–8083. https://doi.org/10.1021/acs.nanolett.5b03492.Search in Google Scholar PubMed

76. Tabandeh-Khorshid, M.; Omrani, E.; Menezes, P. L.; Rohatgi, P. K. Tribological Performance of Self-Lubricating Aluminium Matrix Nanocomposites: Role of Graphene Nanoplatelets. Eng. Sci. Technol. - Int. J. Jestech. 2016, 19, 463–469. https://doi.org/10.1016/j.jestch.2015.09.005.Search in Google Scholar

77. Alrasheedi, N. H. Facile Synthesis and Characterization of Aluminium/Graphene Nanosheets Composites. Arabian J. Sci. Eng. 2016, 41 (11), 4391–4395. https://doi.org/10.1007/s13369-015-1894-4.Search in Google Scholar

78. Alipour, M.; Farsani, R. E. Synthesis and Characterization of Graphene Nanoplatelets Reinforced AA7068 Matrix Nanocomposites Produced by Liquid Metallurgy Route. Mater. Sci. Eng. A. 2017, 706, 71–82. https://doi.org/10.1016/j.msea.2017.08.092.Search in Google Scholar

79. Zhang, Y.; Li, X. Bioinspired, Graphene/Al2O3 Doubly Reinforced Aluminium Composites with High Strength and Toughness. Nano Lett. 2017, 17, 6907–6915. https://doi.org/10.1021/acs.nanolett.7b03308.Search in Google Scholar PubMed

80. Kim, D.; Nam, S.; Roh, A.; Yoo, S.; Quevedo-Lopez, M.; Choi, H. Effect of Interfacial Features on the Mechanical and Electrical Properties of rGO/Al Composites. J. Mater. Sci. 2017, 52, 12001–12012. https://doi.org/10.1007/s10853-017-1282-4.Search in Google Scholar

81. Khan, M.; Amjad, M.; Khan, A.; Ud-Din, R.; Ahmad, I.; Subhani, T. Microstructural Evolution, Mechanical Profile, and Fracture Morphology of Aluminium Matrix Composites Containing Graphene Nanoplatelets. J. Mater. Res. 2017, 32, 2055–2066. https://doi.org/10.1557/jmr.2017.111.Search in Google Scholar

82. Gürbüz, M.; Can Şenel, M.; Koç, E. The Effect of Sintering Time, Temperature, and Graphene Addition on the Hardness and Microstructure of Aluminium Composites. J. Compos. Mater. 2017, 52 (4), 553–563. https://doi.org/10.1177/0021998317740200.Search in Google Scholar

83. Zhang, L.; Hou, G.; Zhai, W.; Ai, Q.; Feng, J.; Zhang, L.; Si, P.; Lijie, C. Aluminium/graphene Composites with Enhanced Heat-Dissipation Properties by In-Situ Reduction of Graphene Oxide on Aluminium Particles. J. Alloys Compd. 2018, 748, 854–860. https://doi.org/10.1016/j.jallcom.2018.03.237.Search in Google Scholar

84. Kumar, P. H. G.; Subramanian, P.; Xavior, M. A.; Sivapuram, K.; Lin, D.; Shukla, P.; Vijay, K. V. Enhanced Surface and Mechanical Properties of Bioinspired Nanolaminate Graphene-Aluminium Alloy Nanocomposites through Laser Shock Processing for Engineering Applications. Mater. Today Commun. 2018, 16, 81–89. https://doi.org/10.1016/j.mtcomm.2018.04.010.Search in Google Scholar

85. Li, D.; Ye, Y.; Liao, X.; Qin, Q. H. A Novel Method for Preparing and Characterizing Graphene Nanoplatelets/aluminium Nanocomposites. Nano Res. 2018, 11, 1642–1650. https://doi.org/10.1007/s12274-017-1779-9.Search in Google Scholar

86. Venkatesan, S.; Anthony Xavior, M. Tensile Behavior of Aluminium Alloy (AA7050) Metal Matrix Composite Reinforced with Graphene Fabricated by Stir and Squeeze Cast Processes. Sci. Technol. Mater. 2018, 30, 74–85. https://doi.org/10.1016/j.stmat.2018.02.005.Search in Google Scholar

87. Dixit, S.; Mahata, A.; Mahapatra, D. R.; Kailas, S. V.; Chattopadhyay, K. Multi-layer Graphene Reinforced Aluminium – Manufacturing of High Strength Composite by Friction Stir Alloying. Compos. Part B Eng. 2018, 136, 63–71. https://doi.org/10.1016/j.compositesb.2017.10.028.Search in Google Scholar

88. Liu, X.; Li, J.; Sha, J.; Liu, E.; Li, Q.; He, C.; Zhao, N. In-situ Synthesis of Graphene Nanosheets Coated Copper for Preparing Reinforced Aluminium Matrix Composites. Mate. Sci. Eng.: A 2018, 709, 65–71. https://doi.org/10.1016/j.msea.2017.10.030.Search in Google Scholar

89. Liu, X.; Li, J.; Liu, E.; He, C.; Shi, C.; Zhao, N. Towards Strength-Ductility Synergy with Favorable Strengthening Effect through the Formation of a Quasi-Continuous Graphene Nanosheets Coated Ni Structure in Aluminium Matrix Composite. Mater. Sci. Eng. A. 2019, 748, 52–58. https://doi.org/10.1016/j.msea.2019.01.046.Search in Google Scholar

90. Bhadauria, A.; Singh, L. K.; Laha, T. Combined Strengthening Effect of Nanocrystalline Matrix and Graphene Nanoplatelet Reinforcement on the Mechanical Properties of Spark Plasma Sintered Aluminium-Based Nanocomposites. Mater. Sci. Eng. A. 2019, 749, 14–26. https://doi.org/10.1016/j.msea.2019.02.007.Search in Google Scholar

91. Wang, J.; Guo, L.; Lin, W.; Chen, J.; Liu, C.; Chen, S.; Zhang, S.; Zhen, T. Effect of the Graphene Content on the Microstructures and Properties of Graphene/aluminium Composites. New Carb. Mater. 2019, 34 (3), 275–285. https://doi.org/10.1016/S1872-5805(19)60016-8.Search in Google Scholar

92. Xie, Y.; Meng, X.; Huang, Y.; Li, J.; Cao, J. Deformation-driven Metallurgy of Graphene Nanoplatelets Reinforced Aluminium Composite for the Balance between Strength and Ductility. Composites Part B 2019, 177, 107413. https://doi.org/10.1016/j.compositesb.2019.107413.Search in Google Scholar

93. Tiwari, J. K.; Mandal, A.; Rudra, A.; Sathish, N.; Kumar, S.; Singh, A. K. Influence of Graphene Content on the Mechanical Properties of Severely Deformed Graphene/aluminium Composite. Mater. Chem. Phys. 2020, 248, 122939. https://doi.org/10.1016/j.matchemphys.2020.122939.Search in Google Scholar

94. Zheng, Z.; Zhong, S.; Zhang, X.; Li, J.; Geng, L. Graphene Nano-Platelets Reinforced Aluminium Composites with Anisotropic Compressive Properties. Mater. Sci. Eng. A 2020, 798, 140234. https://doi.org/10.1016/j.msea.2020.140234.Search in Google Scholar

95. Kumar, R. V.; Harichandran, R.; Vignesh, U.; Thangavel, M.; Chandrasekhar, S. B. Influence of Hot Extrusion on Strain Hardening Behaviour of Graphene Platelets Dispersed Aluminium Composites. J. Alloys Compd. 2021, 855, 157448. https://doi.org/10.1016/j.jallcom.2020.157448.Search in Google Scholar

96. Guan, C.; Zhao, Y.; Chen, G.; Kai, X.; Qian, W.; Tao, R.; Huang, L.; Gao, X.; Jin, L. Synergistic Strengthening and Toughening of Copper Coated Graphene Nanoplates and In Situ Nanoparticles Reinforced AA6111 Composites. Mater. Sci. Eng. A 2021, 822, 141661. https://doi.org/10.1016/j.msea.2021.141661.Search in Google Scholar

97. Vogel, T.; Liu, Y.; Guo, Q.; Zhang, D. Strength-conductivity Synergy in Cold-Drawn Reduced Graphene Oxide (RGO) Aluminium Composite Wires for Electrical Applications. Mater. Des. 2021, 209, 109951. https://doi.org/10.1016/j.matdes.2021.109951.Search in Google Scholar

98. Wang, B.; Liu, J.; Yue, S.; Wang, X.; Zhang, Y.; Fu, Y.; Li, T.; Wang, T. Preparation of graphene/Al Composites with a Lamellar Structure by Silane Cross-Linking Graphene Oxide. J. Mater. Res. Technol. 2021, 13, 2433–2441. https://doi.org/10.1016/j.jmrt.2021.06.009.Search in Google Scholar

99. Khanna, V.; Kumar, V.; Bansal, S. A.; Prakash, C.; Ubaidullah, M.; Shaikh, S. M. F.; Pramanik, A.; Basak, A.; Shankar, S. Fabrication of Efficient Aluminium/graphene Nanosheets (Al-GNP) Composite by Powder Metallurgy for Strength Applications. J. Mater. Res. Technol. 2023, 22, 3402–3412. https://doi.org/10.1016/j.jmrt.2022.12.161.Search in Google Scholar

Received: 2024-01-31
Accepted: 2024-07-15
Published Online: 2025-02-13
Published in Print: 2025-02-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0041/pdf
Scroll to top button