Startseite Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel

  • Hanyu Luo , Xuegang Xiong , Yiyue Lai , Jianchun Cao ORCID logo EMAIL logo , Lisheng Yang und Jinchang Zhang
Veröffentlicht/Copyright: 10. Februar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

With two different Zr content Ti–Zr microalloyed low-carbon steels, isothermal relaxation tests at 875–950 °C were conducted using a Gleeble-3500 thermal simulation testing machine. Based on the Avrami equation, the thermodynamic and kinetic model for the precipitation of Ti ( k 1 + m 1 ) Zr ( k 2 + m 2 ) C ( k 1 + k 2 ) N ( m 1 + m 2 ) in austenite was established. The results indicate that the microalloyed elements in Ti–Zr microalloyed low-carbon steel will form composite precipitates through replacement and heterogeneous mechanisms, and nucleate and precipitate at grain boundaries and dislocations in the form of (Ti, Zr) (C, N). For the nucleation and precipitation of carbonitrides at dislocations in 0.035Zr steel and 0.091Zr steel, their nucleation rate–temperature curves (NrT) and Precipitation–time–temperature (PTT) curves intersect at a certain point. The increase in Zr content suppresses the precipitation of carbonitrides from austenite, reducing the strain-induced precipitation in Ti–Zr microalloyed low-carbon steel during rolling process.


Corresponding author: Jianchun Cao, Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This work was financially supported by the National Natural Science Foundation of China (no. 51761019) and the Vanadium Titanium Alliance Collaborative Project (2022FTLMXTXM-03).

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Zhang, K.; Zhang, T.; Zhang, M.; Chen, Z.; Pan, H.; Yang, G.; Cao, Y.; Li, Z.; Zhang, X. Hot Deformation Behavior, Dynamic Recrystallization Mechanism and Processing Maps of Ti–V Microalloyed High Strength Steel. J. Mater. Res. Technol. 2023, 25, 4201–4215. https://doi.org/10.1016/j.jmrt.2023.06.195.Suche in Google Scholar

2. Fu, Z.; Yang, G.; Mao, X.; Han, R.; Xu, Y.; Xu, D. Microstructure Evolution and Precipitation Behavior of Hot-Rolled High-Strength Ti–Mo–V Micro-alloyed Steel. J. Mater. Res. Technol. 2023, 27, 8132–8142. https://doi.org/10.1016/j.jmrt.2023.11.209.Suche in Google Scholar

3. Nezhad, M. S. A.; Ghazvinian, S.; Amirsalehi, M.; Momeni, A. Design of a Novel HSLA Steel with a Combination of High Strength (140–160 Ksi) and Excellent Toughness. Int. J. Mater. Res. 2021, 112 (10), 800–811. https://doi.org/10.1515/ijmr-2021-8292.Suche in Google Scholar

4. Tian, Y.; Yu, H.; Zhou, T.; Wang, K.; Zhu, Z. Revealing Morphology Rules of MX Precipitates in Ti-V-Nb Multi-Microalloyed Steels. Mater. Charact. 2022, 188, 111919. https://doi.org/10.1016/j.matchar.2022.111919.Suche in Google Scholar

5. Gómez, M.; Medina, S. F. Role of Microalloying Elements in the Microstructure of Hot Rolled Steels. Int. J. Mater. Res. 2011, 102 (10), 1197–1207. https://doi.org/10.3139/146.110585.Suche in Google Scholar

6. Baker, T. N. Microalloyed Steels. Ironmak Steelmak. 2016, 43 (4), 264–307. https://doi.org/10.1179/1743281215Y.0000000063.Suche in Google Scholar

7. Cao, Y.; Wan, X.; Zhou, F.; Shen, Y.; Liu, Y.; Li, G.; Wu, K. Impact of Mo Content on the Microstructure– Toughness Relationship in the Coarse-Grained Heat-Affected Zone of High-Strength Low-Alloy Steels. Int. J. Mater. Res. 2021, 112 (2), 98–107. https://doi.org/10.1515/ijmr-2020-7842.Suche in Google Scholar

8. Wang, S.; Gao, Z.; Wu, G.; Mao, X. Titanium Microalloying of Steel: A Review of its Effects on Processing, Microstructure and Mechanical Properties. Int. J. Min. Met. Mater. 2022, 29 (4), 645–661. https://doi.org/10.1007/s12613-021-2399-7.Suche in Google Scholar

9. Zhang, Q.; Yuan, Q.; Qiao, W.; Chen, G.; Xu, G. Comparison of the Strengthening Effects of Nb, V, and Ti on the Mechanical Properties of 20MnSi Low-Alloy Steel. Int. J. Mater. Res. 2020, 111 (6), 504–510. https://doi.org/10.3139/146.111905.Suche in Google Scholar

10. Zhao, B.; Zhao, T.; Huang, L.; Li, J. Effect of Nitrogen Content on the Static Recrystallization and Precipitation Behaviors of Vanadium–Titanium Microalloyed Steels. Int. J. Mater. Res. 2024, 115 (6), 411–420. https://doi.org/10.1515/ijmr-2023-0122.Suche in Google Scholar

11. Zhang, K.; Sun, X.; Li, Z.; Xu, K.; Jia, T.; Zhu, Z.; Ye, X.; Kang, J.; Yong, Q. Effect of Ti/V Ratio on Thermodynamics and Kinetics of MC in γ/α Matrices of Ti–V Microalloyed Steels. J. Iron Steel Res. Int. 2021, 28 (8), 1019–1029. https://doi.org/10.1007/s42243-020-00539-1.Suche in Google Scholar

12. Li, K.; Shao, J.; Yao, C.; Jia, P.; Xie, S.; Chen, D.; Xiao, M. Effect of Nb-Ti Microalloyed Steel Precipitation Behavior on Hot Rolling Strip Shape and FEM Simulation. Materials 2024, 17 (3), 651. https://doi.org/10.3390/ma17030651.Suche in Google Scholar PubMed PubMed Central

13. Han, R.; Yang, G.; Xu, D.; Jiang, L.; Fu, Z.; Zhao, G. Effect of V on the Precipitation Behavior of Ti−Mo Microalloyed High-Strength Steel. Materials 2022, 15 (17), 5965. https://doi.org/10.3390/ma15175965.Suche in Google Scholar PubMed PubMed Central

14. Liu, W.; Wei, H.; Zhang, K.; Zhang, M.; Li, J.; Zhao, S.; Zhao, P.; Ye, X.; Li, Z.; Ma, Y. Strain-Induced Precipitation Behavior and Microstructure Evolution of Ti-V-Mo Complex Microalloyed Steel. J. Materi. Eng. Perform. 2023. https://doi.org/10.1007/s11665-023-08860-y.Suche in Google Scholar

15. Baker, T. N. Role of Zirconium in Microalloyed Steels: A Review. Mater. Sci. Technol. 2015, 31 (3), 265–294. https://doi.org/10.1179/1743284714Y.0000000549.Suche in Google Scholar

16. Liu, W. J.; Jonas, J. J. A Stress Relaxation Method for Following Carbonitride Precipitation in Austenite at Hot Working Temperatures. Metall. Trans. A 1988, 19 (6), 1403–1413. https://doi.org/10.1007/BF02674014.Suche in Google Scholar

17. Li, X.; Li, H.; Liu, L.; Deng, X.; Wang, Z. The Formation Mechanism of Complex Carbides in Nb-V Microalloyed Steel. Mater. Lett. 2022, 311, 131544. https://doi.org/10.1016/j.matlet.2021.131544.Suche in Google Scholar

18. Yong, Q. L. Secondary Phases In Steel; Metallurgical Industry Press, Beijing, 2006.Suche in Google Scholar

19. Murali, D.; Panigrahi, B. K.; Valsakumar, M. C.; Sundar, C. S. Diffusion of Y and Ti/Zr in Bcc Iron: A First Principles Study. J. Nucl. Mater. 2011, 419 (1), 208–212. https://doi.org/10.1016/j.jnucmat.2011.05.018.Suche in Google Scholar

20. Dutta, B.; Sellars, C. M. Effect of Composition and Process Variables on Nb(C, N) Precipitation in Niobium Microalloyed Austenite. J. Mater. Sci. Technol. 1987, 3 (3), 197–206. https://doi.org/10.1179/mst.1987.3.3.197.Suche in Google Scholar

21. Dutta, B.; Valdes, E.; Sellars, C. M. Mechanism and Kinetics of Strain Induced Precipitation of Nb(C,N) in Austenite. Acta Metall. Mater. 1992, 40 (4), 653–662. https://doi.org/10.1016/0956-7151(92)90006-Z.Suche in Google Scholar

22. Okaguchi, S.; Hashimoto, T. Computer Model for Prediction of Carbonitride Precipitation during Hot Working in Nb-Ti Bearing HSLA Steels. ISIJ Int. 1992, 32 (3), 283–290. https://doi.org/10.2355/isijinternational.32.283.Suche in Google Scholar

23. Speer, J. G.; Michael, J. R.; Hansen, S. S. Carbonitride Precipitation in Niobium/Vanadium Microalloyed Steels. Metall. Trans. A 1987, 18 (2), 211–222. https://doi.org/10.1007/BF02825702.Suche in Google Scholar

24. Zhang, K.; Sun, X. J.; Zhang, Y. M.; Li, Z. D.; Ye, X. Y.; Zhu, Z. H.; Huang, Z. Y.; Yong, Q. L. Kinetics of (Ti, V, Mo)C Precipitated in γ /α Matrix of Ti-V-Mo Complex Microalloyed Steel. Acta Metall. Sin. 2018, 54 (8), 1122–1130. https://doi.org/10.11900/0412.1961.2018.00011.Suche in Google Scholar

25. García-Sesma, L.; López, B.; Pereda, B. Effect of High Ti Contents on Austenite Microstructural Evolution during Hot Deformation in Low Carbon Nb Microalloyed Steels. Metals 2020, 10 (2), 165. https://doi.org/10.3390/met10020165.Suche in Google Scholar

26. Liu, P.; Cao, J.; Yin, S.; Yang, Y.; Gao, P. Effect of Zr on Undissolved Phases and Carbide Precipitation in Ti Microalloyed Low-Carbon Steel. J. Iron Steel Res. Int. 2019, 26 (7), 720–732. https://doi.org/10.1007/s42243-019-00236-8.Suche in Google Scholar

Received: 2023-12-01
Accepted: 2024-10-09
Published Online: 2025-02-10
Published in Print: 2025-02-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0355/pdf
Button zum nach oben scrollen