Abstract
The dissolution of a nickel nanoparticle in aluminium under the conditions of the crystalline and amorphous state of aluminium and nickel, which can be achieved, in particular, with severe plastic deformation of the powders of the initial mixture (mechanoactivation), was studied by means of molecular dynamics. It is shown that the state of the aluminium structure (crystalline or amorphous) has a relatively small effect on the intensity of mutual diffusion of Ni and Al up to the melting temperature of aluminium. This is due to the formation of a crystalline aluminium layer around the crystalline particle, which repeats the Ni lattice. In the case of the amorphous state of the nickel particle and the aluminium matrix, dissolution occurred much faster than in the crystalline state of nickel. That is, mutual diffusion occurs significantly more strongly in the case of the amorphous state of nickel compared to the case of amorphous aluminium at the same constant temperature. The diameter of the nickel nanoparticle in the considered range from 4 to 12 nm did not affect the temperature at which the mutual diffusion of Ni and Al sharply accelerated with varying temperature. This was due to the fact that the melting point of aluminium did not change when simulating particles of different sizes.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
1. Miracle, D. B. Acta Metall. Mater. 1993, 41, 649; https://doi.org/10.1016/0956-7151(93)90001-9.Suche in Google Scholar
2. Tresa, P.; Sammy, T. J. Propul. Power 2006, 22, 361; https://doi.org/10.2514/1.18239.Suche in Google Scholar
3. Reeves, R. V.; Mukasyan, A. S.; Son, S. F. J. Phys. Chem. 2010, 114, 14772; https://doi.org/10.1021/jp104686z.Suche in Google Scholar
4. Rogachev, A. S. Russ. Chem. Rev. 2008, 77, 21; https://doi.org/10.1070/RC2008v077n01ABEH003748.Suche in Google Scholar
5. Morris, M. A.; Leboeuf, M. Mater. Sci. Eng.: A 1997, 224, 1; https://doi.org/10.1016/S0921-5093(96)10532-3.Suche in Google Scholar
6. Bohn, R.; Klassen, T.; Bormann, R. Intermetallics 2001, 9, 559; https://doi.org/10.1016/S0966-9795(01)00039-5.Suche in Google Scholar
7. Kambara, M.; Uenishi, K.; Kobayashi, K. F. J. Mater. Sci. 2000, 35, 2897; https://doi.org/10.1023/A:1004771808047.10.1023/A:1004771808047Suche in Google Scholar
8. Kimura, H. Phil. Mag. A 1996, 73, 723; https://doi.org/10.1080/01418619608242993.Suche in Google Scholar
9. Boldyrev, V. V.; Tkacova, K. J. Mater. Synth. Process. 2000, 8, 121; https://doi.org/10.1023/A:1011347706721.10.1023/A:1011347706721Suche in Google Scholar
10. Filimonov, V. Y.; Loginova, M. V.; Ivanov, S. G.; Sitnikov, A. A.; Yakovlev, V. I.; Sobachkin, A. V.; Negodyaev, A. Z.; Myasnikov, A. Y. Combust. Sci. Technol. 2020, 192, 457; https://doi.org/10.1080/00102202.2019.1571053.Suche in Google Scholar
11. Loginova, M. V.; Yakovlev, V. I.; Filimonov, V. Yu.; Sitnikov, A. A.; Sobachkin, A. V.; Ivanov, S. G.; Gradoboev, A. V. Lett. Mater. 2018, 8, 129; https://doi.org/10.22226/2410-3535-2018-2-129-134.Suche in Google Scholar
12. Fourmont, A.; Politano, O.; Le Gallet, S.; Desgranges, C.; Baras, F. J. Appl. Phys. 2021, 129, 065301. https://doi.org/10.1063/5.0037397.Suche in Google Scholar
13. Baras, F.; Bizot, Q.; Fourmont, A.; Le Gallet, S.; Politano, O. Appl. Phys. A 2021, 127, 555; https://doi.org/10.1007/s00339-021-04700-9.Suche in Google Scholar
14. Purja Pun, G. P.; Mishin, Y. Philos. Mag. 2009, 89, 3245; https://doi.org/10.1080/14786430903258184.Suche in Google Scholar
15. Levchenko, E. V.; Ahmed, T.; Evteev, A. V. Acta Mater. 2017, 136, 74; https://doi.org/10.1016/j.actamat.2017.06.056.Suche in Google Scholar
16. Poletaev, G. M.; Rakitin, R. Y. Mater. Physi. Mech. 2022, 48, 452; https://doi.org/10.18149/MPM.4832022_15.Suche in Google Scholar
17. Chen, C.; Zhang, F.; Xu, H.; Yang, Z.; Poletaev, G. M. J. Mater. Sci. 2022, 57, 1833; https://doi.org/10.1007/s10853-021-06837-7.Suche in Google Scholar
18. Poletaev, G. M. Molecular Dynamics Research (MDR). In Certificate Of State Registration of a Computer Program No. 2015661912 Dated; Rospatent: Moscow, 2015.Suche in Google Scholar
19. Levchenko, E. V.; Evteev, A. V.; Lorscheider, T.; Belova, I. V.; Murch, G. E. Comput. Mater. Sci. 2013, 79, 316; https://doi.org/10.1016/j.commatsci.2013.06.005.Suche in Google Scholar
20. Cherukara, M. J.; Weihs, T. P.; Strachan, A. Acta Mater. 2015, 96, 1; https://doi.org/10.1016/j.actamat.2015.06.008.Suche in Google Scholar
21. Poletaev, G. M.; Bebikhov, Y.V.; Semenov, A. S.; Sitnikov, A. A. J. Exp. Theor. Phys. 2023, 136, 477; https://doi.org/10.1134/S1063776123040118.Suche in Google Scholar
22. Phillpot, S. R.; Lutsko, J. F.; Wolf, D.; Yip, S. Phys. Rev. B 1989, 40, 2831; https://doi.org/10.1103/PhysRevB.40.2831.Suche in Google Scholar
23. Wejrzanowski, T.; Lewandowska, M.; Sikorski, K.; Kurzydlowski, K. J. J. Appl. Phys. 2014, 116, 164302; https://doi.org/10.1063/1.4899240.Suche in Google Scholar
24. Noori, Z.; Panjepour, M.; Ahmadian, M. J. Mater. Res. 2015, 30, 1648; https://doi.org/10.1557/jmr.2015.109.Suche in Google Scholar
25. Qi, Y.; Cagin, Т.; Johnson, W. L.; Goddard, W. A.III.. J. Chem. Phys. 2001, 115, 385; https://doi.org/10.1063/1.1373664.Suche in Google Scholar
26. Poletaev, G. M.; Gafner, Y. Y.; Gafner, S. L. Lett. Mater. 2023, 13, 298; https://doi.org/10.22226/2410-3535-2023-4-298-303.Suche in Google Scholar
27. Xiong, S.; Qi, W.; Cheng, Y.; Huang, B.; Wang, M.; Li, Y. Phys. Chem. Chem. Phys. 2011, 13, 10652; https://doi.org/10.1039/C0CP90161J.Suche in Google Scholar
28. Hamilton, J. C.; Foiles, S. M. Phys. Rev. Lett. 1995, 75, 882; https://doi.org/10.1103/PhysRevLett.75.882.Suche in Google Scholar PubMed
29. Wang, Y.; Ruterana, P.; Kret, S.; Chen, J.; El Kazzi, S.; Desplanque, L.; Wallart, X. Appl. Phys. Lett. 2012, 100, 262110; https://doi.org/10.1063/1.4731787.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde