Abstract
Due to their special structure and many excellent properties, porous Si3N4 ceramics have a wide range of potential applications as a new structural and functional integrated material. In the present study, porous Si3N4 ceramics with excellent bending properties and satisfactory porosity were prepared by the gel-casting method. The variations in porosity, bending strength, fracture morphology and phase composition of the porous Si3N4 ceramics with different weight fractions of La2O3–MgO sintering additive were investigated. The results showed that the density of porous Si3N4 ceramics increased linearly with the increase of sintering additive content. When the content of sintering additive increased from 2.5 wt.% to 10 wt.%, the porosity of porous ceramics decreased from 30 % to 10 %. With the increase of sintering additive content, the bending strength of the samples first increased and then decreased. When the sintering additive content was 5.0 wt.%, the average bending strength of the samples reached a maximum of 240.88 MPa, and scanning electron microscopy and X-ray diffractometry results showed that β-Si3N4 particles with well-developed pores and a maximum aspect ratio of 5.8 were formed in the porous silicon nitride ceramics. This study provides a reference for the preparation of porous Si3N4 ceramics with good bending properties and porosity.
-
Research ethics: Not application.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not application.
References
1. Dele Afolabi, T. T.; Hanim, M. A. A.; Norkhairunnisa, M.; Sobri, S.; Calin, R. Investigating the Effect of Porosity Level and Pore Former Type on the Mechanical and Corrosion Resistance Properties of Agro-Waste Shaped Porous Alumina Ceramics. Ceram. Int. 2017, 43 (12), 8743–8754. https://doi.org/10.1016/j.ceramint.2017.03.210.Search in Google Scholar
2. Chae, S. H.; Kim, Y. W. Effect of Inert Filler Addition on Microstructure and Strength of Porous SiC Ceramics. J. Mater. Sci.: Mater. Electron. 2009, 44 (5), 1404–1406. https://doi.org/10.1007/s10853-009-3264-7.Search in Google Scholar
3. Yang, J. F.; Zhang, G. J.; She, J. H.; Ohji, T.; Kanzaki, S. Improvement of Mechanical Properties and Corrosion Resistance of Porous β-SiAlON Ceramics by Low Y2O3 Additions. J. Am. Ceram. Soc. 2004, 87 (9), 1714–1719. https://doi.org/10.1111/j.1551-2916.2004.01714.x.Search in Google Scholar
4. Wu, Z.; Sun, L.; Tian, Z.; Wang, J.; Li, J.; Hu, Z. Preparation and Properties of Reticulated Porous γ-Y2Si2O7 Ceramics with High Porosity and Relatively High Strength. Ceram. Int. 2014, 40 (7, Part A), 10013–10020. https://doi.org/10.1016/j.ceramint.2014.02.100.Search in Google Scholar
5. Dele-Afolabi, T. T.; Hanim, M. A. A.; Norkhairunnisa, M.; Sobri, S.; Calin, R.; Ismarrubie, Z. N. Tensile Strength and Corrosion Resistance Properties of Porous Al2O3/Ni Composites Prepared with Rice Husk Pore-Forming Agent. Ceram. Int. 2018, 44 (10), 11127–11135. https://doi.org/10.1016/j.ceramint.2018.03.124.Search in Google Scholar
6. Molin, S.; Gazda, M.; Jasinski, P. Coatings for Improvement of High Temperature Corrosion Resistance of Porous Alloys. J. Eur. Ceram. Soc. 2011, 31 (14), 2707–2710. https://doi.org/10.1016/j.jeurceramsoc.2011.02.007.Search in Google Scholar
7. She, J.; Yang, J. F.; Kondo, N.; Ohji, T.; Kanzaki, S.; Deng, Z. Y. High‐Strength Porous Silicon Carbide Ceramics by an Oxidation‐bonding Technique. J. Am. Ceram. Soc. 2002, 85 (11), 2852–2854. https://doi.org/10.1111/j.1151-2916.2002.tb00542.x.Search in Google Scholar
8. Dutta, S.; Buzek, B. Microstructure, Strength, and Oxidation of a 10 Wt% Zyttrite‐Si3N4 Ceramic. J. Am. Ceram. Soc. 1984, 67 (2), 89–92. https://doi.org/10.1111/j.1151-2916.1984.tb09621.x.Search in Google Scholar
9. Huang, Z. K.; Rosenflanz, A.; Chen, I. W. Pressureless Sintering of Si3N4 Ceramic Using AlN and Rare‐Earth Oxides. J. Am. Ceram. Soc. 1997, 80 (5), 1256–1262. https://doi.org/10.1111/j.1151-2916.1997.tb02972.x.Search in Google Scholar
10. Xiao, C.; Bing, H. A. N. Preparation of Porous Silicon Nitride Ceramics by Microwave Sintering and its Performance Evaluation. J. Mater. Res. Technol. 2019, 8 (6), 5984–5995. https://doi.org/10.1016/j.jmrt.2019.09.073.Search in Google Scholar
11. Xiao, C. F.; Han, B. Preparation of Porous Silicon Nitride Ceramics by Freeze Drying. J. Mater. Res. Technol. 2019, 8 (6), 6202–6208. https://doi.org/10.1016/j.jmrt.2019.10.014.Search in Google Scholar
12. Xia, L.; Yang, Y.; Zhang, X.; Zhang, J.; Zhong, B.; Zhang, T.; Wang, H.; Wen, G. Crystal Structure and Wave-Transparent Properties of Lithium Aluminum Silicate Glass-Ceramics. Ceram. Int. 2018, 44 (12), 14896–14900. https://doi.org/10.1016/j.ceramint.2018.04.202.Search in Google Scholar
13. Zhou, J.; Fan, J.; Sun, G.; Zhang, J.; Liu, X.; Zhang, D.; Wang, H. Preparation and Properties of Porous Silicon Nitride Ceramics with Uniform Spherical Pores by Improved Pore-Forming Agent Method. J. Alloys Compd. 2015, 632, 655–660. https://doi.org/10.1016/j.jallcom.2015.01.305.Search in Google Scholar
14. Yang, J. F.; Deng, Z. Y.; Ohji, T. Fabrication and Characterisation of Porous Silicon Nitride Ceramics Using Yb2O3 as Sintering Additive. J. Eur. Ceram. Soc. 2003, 23 (2), 371–378. https://doi.org/10.1016/S0955-2219(02)00175-9.Search in Google Scholar
15. Yang, J. F.; Shan, S. Y.; Janssen, R.; Schneider, G.; Ohji, T.; Kanzaki, S. Synthesis of Fibrous β-Si3N4 Structured Porous Ceramics Using Carbothermal Nitridation of Silica. Acta Mater. 2005, 53 (10), 2981–2990. https://doi.org/10.1016/j.actamat.2005.03.011.Search in Google Scholar
16. Asthana, R.; Singh, M.; Martinez-Fernandez, J. Joining and Interface Characterization of In Situ Reinforced Silicon Nitride. J. Alloys Compd. 2013, 552, 137–145. https://doi.org/10.1016/j.jallcom.2012.09.104.Search in Google Scholar
17. Chen, F.; Shen, Q.; Yan, F.; Zhang, L. Pressureless Sintering of α-Si3N4 Porous Ceramics Using a H3PO4 Pore-Forming Agent. J. Am. Ceram. Soc. 2007, 90 (8), 2379–2383. https://doi.org/10.1111/j.1551-2916.2007.01800.x.Search in Google Scholar
18. Li, F.; Zhou, W.; Hu, H.; Luo, F.; Zhu, D. High Performance Porous Si3N4 Ceramics Prepared by Coated Pore-Forming Agent Method. Ceram. Int. 2009, 35 (8), 3169–3173. https://doi.org/10.1016/j.ceramint.2009.05.007.Search in Google Scholar
19. Yin, L.; Zhou, X.; Yu, J.; Wang, H.; Liu, Z. Protein Foaming Method to Prepare Si3N4 Foams by Using a Mixture of Egg White Protein and Whey Protein Isolate. Ceram. Int. 2014, 40 (8), 11503–11509. https://doi.org/10.1016/j.ceramint.2014.03.043.Search in Google Scholar
20. Yu, J.; Yang, J.; Li, S.; Li, H.; Huang, Y. Preparation of Si3N4 Foam Ceramics with Nest‐like Cell Structure by Particle‐stabilized Foams. J. Am. Ceram. Soc. 2012, 95 (4), 1229–1233. https://doi.org/10.1111/j.1551-2916.2011.05017.x.Search in Google Scholar
21. Cai, Y.; Li, X.; Dong, J. Properties of Porous Si3N4 Ceramic Electromagnetic Wave Transparent Materials Prepared by Technique Combining Freeze Drying and Oxidation Sintering. J. Mater. Sci.: Mater. Electron. 2014, 25 (4), 1949–1954. https://doi.org/10.1007/s10854-014-1827-0.Search in Google Scholar
22. Xia, Y.; Zeng, Y.; Jiang, D. Microstructure and Mechanical Properties of Porous Si3N4 Ceramics Prepared by Freeze-Casting. Mater. Des. 2012, 33, 98–103. https://doi.org/10.1016/j.matdes.2011.06.023.Search in Google Scholar
23. Kim, J. H.; Hwang, K. H.; Lee, J. K. Effect of Reaction Temperature on the Powder and Sintering Characteristics of Urea-Derived Y-TZP Ceramics. J. Nanosci. Nanotechnol. 2017, 17 (10), 7751–7755. https://doi.org/10.1166/jnn.2017.14802.Search in Google Scholar
24. El-Sheikh, S. M.; Ahmed, Y. M. Z.; Ewais, E. M. M.; Al-Sharab, J. F. Role of Temperature and Nitrogen Flow Rate during the Carbothermic Synthesis of SiC/Si3N4 Nanocomposite Powder from Gel. J. Am. Ceram. Soc. 2010, 93 (7), 2082–2091. https://doi.org/10.1111/j.1551-2916.2010.03670.x.Search in Google Scholar
25. Sun, Y.; Zhang, J.; Lu, S.; Liu, H. Preparation of Porous Cordierite Ceramic by Gel-Casting Method. Adv. Appl. Ceram. 2017, 116 (7), 362–367. https://doi.org/10.1080/17436753.2017.1329122.Search in Google Scholar
26. Yu, J.; Wang, H.; Zhang, J. Neural Network Modeling and Analysis of Gel Casting Preparation of Porous Si3N4 Ceramics. Ceram. Int. 2009, 35 (7), 2943–2950. https://doi.org/10.1016/j.ceramint.2009.04.008.Search in Google Scholar
27. Zou, C.; Zhang, C.; Li, B.; Wang, S.; Cao, F. Microstructure and Properties of Porous Silicon Nitride Ceramics Prepared by Gel-Casting and Gas Pressure Sintering. Mater. Des. 2013, 44, 114–118. https://doi.org/10.1016/j.matdes.2012.07.056.Search in Google Scholar
28. Yang, Z.; Yu, J.; Deng, K.; Lan, L.; Wang, H.; Ren, Z.; Wang, Q.; Dai, Y.; Wang, H. Fabrication of Textured Si3N4 Ceramics with β-Si3N4 Powders as Raw Material by Gel-Casting under Strong Magnetic Field. Mater. Lett. 2014, 135, 218–221. https://doi.org/10.1016/j.matlet.2014.07.038.Search in Google Scholar
29. Yu, F.; Wang, H.; Bai, Y.; Yang, J. Preparation and Characterization of Porous Si3N4 Ceramics Prepared by Compression Molding and Slip Casting Methods. Bull. Mater. Sci. 2010, 33 (5), 619–624. https://doi.org/10.1007/s12034-010-0094-9.Search in Google Scholar
30. Kitayama, M.; Hirao, K.; Kanzaki, S. Effect of Rare Earth Oxide Additives on the Phase Transformation Rates of Si3N4. J. Am. Ceram. Soc. 2006, 89 (8), 2612–2618. https://doi.org/10.1111/j.1551-2916.2006.01106.x.Search in Google Scholar
31. Drew, P.; Lewis, M. The Microstructures of Silicon Nitride Ceramics during Hot-Pressing Transformations. J. Mater. Sci. 1974, 9 (2), 261–269. https://doi.org/10.1007/BF00550950.Search in Google Scholar
32. Zhang, J.; Cui, W.; Li, F.; Du, S.; Tian, Z.; Sun, S.; Chen, K.; Liu, G. Effects of MgSiN2 Addition and Post-annealing on Mechanical and Thermal Properties of Si3N4 Ceramics. Ceram. Int. 2020, 46 (10), 15719–15722. https://doi.org/10.1016/j.ceramint.2020.03.097.Search in Google Scholar
33. Müller, M.; Rögner, J.; Okolo, B.; Bauer, W.; Knitter, R. Processing of Micro-components Made of Sintered Reaction-Bonded Silicon Nitride (SRBSN). Part 2: Sintering Behaviour and Micro-Mechanical Properties. Ceram. Int. 2010, 36 (2), 707–717. https://doi.org/10.1016/j.ceramint.2009.11.008.Search in Google Scholar
34. Sun, M.; Li, Q.; Huang, S.; Cheng, X. Fabrication of β-Si3N4 Whiskers by Microwave Sintering Using ZrO2–Y2o3–Al2O3 as Liquid Phase. Int. J. Mater. Res. 2015, 106 (9), 1014–1018. https://doi.org/10.3139/146.111266.Search in Google Scholar
35. Satet, R. L.; Hoffmann, M. J.; Cannon, R. M. Experimental Evidence of the Impact of Rare-Earth Elements on Particle Growth and Mechanical Behaviour of Silicon Nitride. Mater. Sci. Eng., A 2006, 422 (1), 66–76. https://doi.org/10.1016/j.msea.2006.01.015.Search in Google Scholar
36. Shibata, N.; Pennycook, S. J.; Gosnell, T. R.; Painter, G. S.; Shelton, W. A.; Becher, P. F. J. N. Observation of Rare-Earth Segregation in Silicon Nitride Ceramics at Subnanometre Dimensions. Nature 2004, 428 (6984), 730–733. https://doi.org/10.1038/nature02410.Search in Google Scholar PubMed
37. Liu, T.; Jiang, C.; Guo, W. Effect of CeO2 on Low Temperature Pressureless Sintering of Porous Si3N4 Ceramics. J. Rare Earths 2017, 35 (2), 172–176. https://doi.org/10.1016/S1002-0721(17)60896-2.Search in Google Scholar
38. Yang, X.; Li, B.; Zhang, C.; Wang, S.; Liu, K.; Zou, C. Fabrication and Properties of Porous Silicon Nitride Wave-Transparent Ceramics via Gel-Casting and Pressureless Sintering. Mater. Sci. Eng., A 2016, 663, 174–180. https://doi.org/10.1016/j.msea.2016.03.116.Search in Google Scholar
39. Becher, P. F.; Painter, G. S.; Shibata, N.; Waters, S. B.; Lin, H.-T. Effects of Rare-Earth (RE) Intergranular Adsorption on the Phase Transformation, Microstructure Evolution, and Mechanical Properties in Silicon Nitride with RE2O3+MgO Additives: RE=La, Gd, and Lu. J. Am. Ceram. Soc. 2008, 91 (7), 2328–2336. https://doi.org/10.1111/j.1551-2916.2008.02448.x.Search in Google Scholar
40. Liang, H.; Wang, W.; Zuo, K.; Xia, Y.; Yao, D.; Yin, J.; Zeng, Y. Effect of LaB6 Addition on Mechanical Properties and Thermal Conductivity of Silicon Nitride Ceramics. Ceram. Int. 2020, 46 (11, Part A), 17776–17783. https://doi.org/10.1016/j.ceramint.2020.04.083.Search in Google Scholar
41. Li, M.; Huang, H.-L.; Wu, J.-M.; Wu, Y.-R.; Shi, Z.-A.; Zhang, J.-X.; Shi, Y.-S. Preparation and Properties of Si3N4 Ceramics via Digital Light Processing Using Si3N4 Powder Coated with Al2O3–Y2o3 Sintering Additives. Addit. Manuf. 2022, 53, 102713. https://doi.org/10.1016/j.addma.2022.102713.Search in Google Scholar
42. He, L.; Huang, N.; Lu, D.; Sheng, P.; Zou, W. A Study on the Effects of Liquid Phase Formation Temperature and the Content of Sintering Aids on the Sintering of Silicon Nitride Ceramics. Crystals 2023, 13 (7), 1099. https://doi.org/10.3390/cryst13071099.Search in Google Scholar
43. Yang, H.; Li, Y.; Li, Q.; Wang, Z.; Wu, H.; Liu, X.; Wu, Y.; Cheng, X. Preparation and Properties of Porous Silicon Nitride Ceramics with Polymethyl Methacrylate as Pore-Forming Agent. Ceram. Int. 2020, 46 (10, Part B), 17122–17129. https://doi.org/10.1016/j.ceramint.2020.03.204.Search in Google Scholar
44. Zhang, Z.; Duan, X.; Zhang, Z.; Guo, W.; Lin, H.; Cai, D.; He, P.; Jia, D.; Zhou, Y. Effect of Re2O3–MgO Additives on the Microstructure Evolution and Properties of β-Si3N4 Ceramics. Ceram. Int. 2021, 47 (15), 22073–22079. https://doi.org/10.1016/j.ceramint.2021.04.228.Search in Google Scholar
45. Zhao, Y.; Zhang, Y.; Gong, H.; Wang, X.; Sun, H. Effects of Y2O3–MgO Nanopowders Content on Mechanical and Dielectric Properties of Porous BN/Si3N4 Composites. Ceram. Int. 2015, 41 (3, Part A), 3618–3623. https://doi.org/10.1016/j.ceramint.2014.11.025.Search in Google Scholar
46. Zhang, H.; Liu, Q.; Zhang, B.; Ye, J.; Jin, Y.; Zhong, Z.; Wang, Y.; Liu, H.; Ye, F. A Comparative Study on Dielectric and Mechanical Properties of Porous β-Si3N4 Ceramics by Controlling Porosity and Microstructure. J. Eur. Ceram. Soc. 2022, 42 (3), 905–912. https://doi.org/10.1016/j.jeurceramsoc.2021.11.004.Search in Google Scholar
47. Ma, H.; Bao, C. Preparation, Properties and Growth Mechanism of Low-Cost Porous Si3N4 Ceramics with High Levels of β-Si3N4 Powders. Silicon 2022, 14 (4), 1357–1367. https://doi.org/10.1007/s12633-021-00941-8.Search in Google Scholar
48. Zhi, Q.; Wang, B.; Zhao, S.; Zhang, Z.; Deng, Y.-C.; Hou, B.-Q.; Zhang, N.-L.; Yang, J.-F. Simultaneous Improvement in Porosity and Strength of Porous β-Si3N4 Ceramics by Formation of Ultrafine Fibrous Grains. Ceram. Int. 2021, 47 (6), 8113–8122. https://doi.org/10.1016/j.ceramint.2020.11.166.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Experimental investigation and thermodynamic analysis of TiC–Fe cermets with Mo additions
- Investigations on porous silicon nitride ceramics prepared by the gel-casting method
- Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel
- Effect of nitrogen content on the static recrystallization and precipitation behaviors of vanadium–titanium microalloyed steels
- Effects of addition of Er and Zr on microstructure and mechanical properties of Al–Cu–Mn–Si–Mg alloy
- The quasi-binary phase diagrams of R 2Fe14B–Ce2Fe14B (R = Nd, Pr) systems
- Trivalent Gd incorporated Zn2SiO4 phosphor material for EPR and luminescence investigations
- Effects of translaminar edge crack and fiber angle on fracture toughness and crack propagation behaviors of laminated carbon fiber composites
- Blast protection of underwater tunnels with 3D auxetic materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Experimental investigation and thermodynamic analysis of TiC–Fe cermets with Mo additions
- Investigations on porous silicon nitride ceramics prepared by the gel-casting method
- Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel
- Effect of nitrogen content on the static recrystallization and precipitation behaviors of vanadium–titanium microalloyed steels
- Effects of addition of Er and Zr on microstructure and mechanical properties of Al–Cu–Mn–Si–Mg alloy
- The quasi-binary phase diagrams of R 2Fe14B–Ce2Fe14B (R = Nd, Pr) systems
- Trivalent Gd incorporated Zn2SiO4 phosphor material for EPR and luminescence investigations
- Effects of translaminar edge crack and fiber angle on fracture toughness and crack propagation behaviors of laminated carbon fiber composites
- Blast protection of underwater tunnels with 3D auxetic materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde