Startseite Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes

  • Xiaoyu Wang , Zizhan Sun , Chunhu Yu , Zhengyu Cai , Chuangang Fan und Lizhai Pei ORCID logo EMAIL logo
Veröffentlicht/Copyright: 16. Februar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Bi2O3/Dy2O3 nanoflakes with triclinic Bi2O3 and cubic Dy2O3 phases were synthesized by a hexadecyl trimethyl ammonium bromide (CTAB)-assisted hydrothermal route. The Bi2O3/Dy2O3 nanoflakes were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, electron microscopy and electrochemical impedance spectroscopy. The size of the Bi2O3/Dy2O3 nanoflakes with curled surface is about 2 μm and thickness is about 25 nm. X-ray photoelectron spectroscopy confirms the chemical composition of the Bi2O3/Dy2O3 nanoflakes. The formation process of the Bi2O3/Dy2O3 nanoflakes was investigated by controlling the CTAB concentration, reaction temperature and reaction time. The formation of the Bi2O3/Dy2O3 nanoflakes depends on CTAB. The results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy demonstrate good electro-catalytic activity of the Bi2O3/Dy2O3 nanoflakes towards L-cysteine with a pair of quasi-reversible CV peaks at +0.01 V and –0.68 V, respectively. Bi2O3/Dy2O3 nanoflakes modified electrode detects L-cysteine linearly over a concentration ranging from 0.001 to 2 mM with a detection limit of 0.32 μM. The proposed nanocomposites modified electrode possesses good reproducibility and stability which can be used as a promising candidate for L-cysteine detection.


Corresponding author: Lizhai Pei, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Natural Science Foundation of Anhui Province of P. R. China (2008085ME172), National Scholarship Fund of China Scholarship Council (CSC) (202008340046) and Student Innovation and Entrepreneurship Training Program of P. R. China (202210360026).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Hosseini, H., Ahmar, H., Dehghani, A., Bagheri, A., Tadjarodi, A., Fakhari, A. R. Biosens. Bioelectron. 2013, 42, 426. https://doi.org/10.1016/j.bios.2012.09.062.Suche in Google Scholar PubMed

2. Gupta, V. K., Shamsadin-Azad, Z., Cheraghi, S., Agarwai, S., Taher, M. A., Karimi, F. Int. J. Electrochem. Sci. 2018, 13, 4309. https://doi.org/10.20964/2018.05.53.Suche in Google Scholar

3. Nie, L. H., Ma, H. M., Sun, M., Li, X. H., Su, M. H., Liang, S. C. Talanta 2003, 59, 959. https://doi.org/10.1016/s0039-9140(02)00649-5.Suche in Google Scholar

4. Rani, B. K., John, S. A. Biosens. Bioelectron. 2016, 83, 237. https://doi.org/10.1016/j.bios.2016.04.013.Suche in Google Scholar PubMed

5. Tu, C. Q., Wen, X. R. E3S Web. Conf. 2021, 245, 03023. https://doi.org/10.1051/e3sconf/202124503023.Suche in Google Scholar

6. Gavrilova, T. B., Kiselev, A. V., Kulikov, N. S., Vlasenko, E. V. Chromatographia 1986, 22, 59. https://doi.org/10.1007/BF02257299.Suche in Google Scholar

7. Kuśmierek, K., Głowacki, R., Bald, E. Anal. Bioanal. Chem. 2006, 385, 855. https://doi.org/10.1007/s00216-006-0454-x.Suche in Google Scholar PubMed

8. Yang, S. M., Zheng, Y., Zhang, X. R., Ding, S. Q., Li, L. L., Zha, W. L. J. Solid State Electrochem. 2016, 20, 2037. https://doi.org/10.1007/s10008-016-3213-8.Suche in Google Scholar

9. Pei, L. Z., Wei, T., Lin, N., Cai, Z. Y., Fan, C. G., Yang, Z. J. Electrochem. Soc. 2016, 163, H1. https://doi.org/110.1149/2.0041602jes.10.1149/2.0041602jesSuche in Google Scholar

10. Pei, L. Z., Wei, T., Lin, N., Zhang, H., Fan, C. G. Russ. J. Electrochem. 2018, 54, 84. https://doi.org/10.1134/s102319351711012x.Suche in Google Scholar

11. Upan, J., Lerdsri, J., Soongsong, J., Mool-am-kha, P., Sridara, T., Reanpang, P., Jakmunee, J. Analyst 2022, 147, 2170. https://doi.org/10.1039/D2AN00346E.Suche in Google Scholar PubMed

12. Jean, C. N., Bai, J., Qi, B., Guo, L. P. Anal. Biochem. 2009, 386, 79. https://doi.org/10.1016/j.ab.2008.11.041.Suche in Google Scholar PubMed

13. Razmi, H., Habibi, E. Electroanalysis 2009, 21, 867. https://doi.org/10.1002/elan.200804487.Suche in Google Scholar

14. Pei, L. Z., Pei, Y. Q., Xie, Y. K., Fan, C. G., Yu, H. Y. CrystEngComm 2013, 15, 1729. https://doi.org/10.1039/c2ce26592c.Suche in Google Scholar

15. Su, W. Y., Cheng, S. H. Electrochem. Commun. 2008, 10, 899. https://doi.org/10.1016/j.elecom.2008.04.013.Suche in Google Scholar

16. Zhou, M., Ding, J., Guo, L. P., Shang, Q. K. Anal. Chem. 2007, 79, 5328. https://doi.org/0.1021/ac0703707.10.1021/ac0703707Suche in Google Scholar PubMed

17. Ziyatdinova, G., Kozlova, E., Budnikov, H. Electrochim. Acta 2018, 270, 369. https://doi.org/10.1016/j.electacta.2018.03.102.Suche in Google Scholar

18. Varodi, C., Pogacean, F., Ciorita, A., Pana, O., Leostean, C., Cozar, B., Radu, T., Coros, M., Staden, R. I. S., Pruneanu, S. M. Chemosensors 2021, 9, 146. https://doi.org/10.3390/chemosensors9060146.Suche in Google Scholar

19. Atapour, M., Amoabediny, G., Ahmadzadeh-Raji, M. RSC Adv. 2019, 9, 8882. https://doi.org/10.1039/C8RA09659G.Suche in Google Scholar PubMed PubMed Central

20. Manibalan, G., Murugadoss, G., Thangamuthu, R., Kumar, M. R., Kumar, R. M., Jayavel, R. Inorg. Chem. Commun. 2020, 113, 107793. https://doi.org/10.1016/j.inoche.2020.107793.Suche in Google Scholar

21. Manibalan, G., Murugadoss, G., Thangamuthu, R., Kumar, M. R., Kumar, R. M. J. Alloys Compd. 2019, 792, 1151. https://doi.org/10.1016/j.jallcom.2019.04.127.Suche in Google Scholar

22. Ge, S. G., Yan, M., Lu, J. J., Zhang, M., Yu, F., Yu, J. H., Song, X. R., Yu, S. L. Biosens. Bioelectron. 2012, 31, 49. https://doi.org/10.1016/j.bios.2011.09.038.Suche in Google Scholar PubMed

23. Farsi, H., Moghminia, S., Roohi, A., Hosseini, S. A. Electrochim. Acta 2014, 148, 93. https://doi.org/10.1016/j.electacta.2014.10.040.10.1016/j.electacta.2014.10.040Suche in Google Scholar

24. Yamuna, A., Sundaresan, P., Chen, S. M. Ultrason. Sonochem. 2020, 64, 105014. https://doi.org/10.1016/j.ultsonch.2020.105014.Suche in Google Scholar PubMed

25. Kokulnathan, T., Vishnuraj, R., Wang, T. J., Kumar, E. A., Pullithadathil, B. Ecotoxicol. Environ. Saf. 2021, 207, 111276. https://doi.org/10.1016/j.ecoenv.2020.111276.Suche in Google Scholar PubMed

26. Das, T. R., Sharma, P. K. Microchem. J. 2019, 147, 1203. https://doi.org/10.1016/j.microc.2019.04.001.Suche in Google Scholar

27. Geoffrion, L. D., Medina-Cruz, D., Kusper, M., Elsaidi, S., Watanabe, F., Parajuli, P., Ponce, A., Hoang, T. B., Brintlinger, T., Webster, T. J., Guisbiers, G. Nanoscale Adv. 2021, 3, 4106. https://doi.org/10.1039/D0NA00910E.Suche in Google Scholar PubMed PubMed Central

28. Hu, Q. C., Cheng, X. L., Zhang, X. F., Xu, Y. M., Gao, S., Zhao, H., Major, Z., Huo, L. H. Sensor. Actuator. B Chem. 2020, 305, 127434. https://doi.org/10.1016/j.snb.2019.127434.Suche in Google Scholar

29. Rajendran, V., Mekala, R. J. Alloys Compd. 2018, 741, 1055. https://doi.org/10.1016/j.jallcom.2018.01.086.Suche in Google Scholar

30. Dong, X., Cheng, X. L., Zhang, X. F., Sui, L. L., Xu, Y. M., Gao, S., Zhao, H., Huo, L. H. Sensor. Actuator. B Chem. 2018, 255, 1308. https://doi.org/10.1016/j.snb.2017.08.117.Suche in Google Scholar

31. Gopinath, K., Chinnadurai, M., Devi, N. P., Bhakyaraj, K., Kumaraguru, S., Baranisri, T., Sudha, A., Zeeshan, M., Arumugam, A., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Benelli, G. J. Cluster Sci. 2017, 28, 621. https://doi.org/10.1007/s10876-016-1150-4.Suche in Google Scholar

32. Safari-Amiri, M., Moriazavi-Derazkola, S., Salavatl-Ntasari, M., Ghoreishi, S. M. J. Mater. Sci. Mater. Electron. 2017, 28, 6467. https://doi.org/10.1007/s10854-017-6333-8.Suche in Google Scholar

33. Chandar, N. K., Jayavel, R. J. Phys. Chem. Solid. 2012, 73, 1164. https://doi.org/10.1016/j.jpcs.2012.05.009.Suche in Google Scholar

34. Liu, W. C., Qu, Y., Li, H., Ji, F. J., Dong, H. L., Wu, M. K., Chen, H., Lin, Z. D. Sensor. Actuator. B Chem. 2019, 294, 224. https://doi.org/10.1016/j.snb.2019.05.042.Suche in Google Scholar

35. Qiu, F. L., Wang, Z., Chen, H. J., Ma, Y., Wu, H., Yan, L., Pei, L. Z., Fan, C. G. Curr. Nanosci. 2020, 16, 805. https://doi.org/10.2174/1573413715666191212153902.Suche in Google Scholar

36. Wang, Z., Chen, H. J., Qiu, F. L., Xue, Z. Y., Yu, C. H., Wang, P. X., Cong, Q. M., Pei, L. Z., Fan, C. G., Zhang, Y. Curr. Nanosci. 2021, 17, 315. https://doi.org/10.2174/1573413716999200817120339.Suche in Google Scholar

37. Wu, Y. X., Xu, M. Q., Chen, X., Yang, S. L., Wu, H. H., Pan, J., Xiong, X. Nanoscale 2016, 8, 440. https://doi.org/10.1039/C5NR05748E.Suche in Google Scholar PubMed

38. Uddin, A., Muhmood, T., Guo, Z. C., Gu, J. Y., Chen, H., Jiang, F. J. Alloys Compd. 2020, 845, 156206. https://doi.org/10.1016/j.jallcom.2020.156206.Suche in Google Scholar

39. He, H. Y., He, Z., Shen, Q. Int. J. Hydrogen Energy 2018, 43, 21835. https://doi.org/10.1016/j.ijhydene.2018.10.023.Suche in Google Scholar

40. Zheng, J. H., Zhang, L. Chem. Eng. J. 2019, 369, 947. https://doi.org/10.1016/j.cej.2019.03.131.Suche in Google Scholar

41. Luo, Y. P., Chen, J., Liu, J. W., Shao, Y., Li, X. F., Li, D. Z. Appl. Catal. B Environ. 2016, 182, 533. https://doi.org/10.1016/j.apcatb.2015.09.051.Suche in Google Scholar

42. Kannan, V., Arredondo, M., Johann, F., Hesse, D., Labrugere, C., Maglione, M., Vrejoiu, I. Thin Solid Films 2013, 545, 130. https://doi.org/10.1016/j.tsf.2013.07.053.Suche in Google Scholar

43. Gokhale, S., Ahmed, N., Mahamuni, S., Rao, V. J., Nigavekar, A. S., Kulkarni, S. K. Surf. Sci. 1989, 210, 85. https://doi.org/10.1016/0039-6028(89)90104-0.Suche in Google Scholar

44. Shen, S. H., Zhao, L., Guo, L. J. Int. J. Hydrogen Energy 2008, 33, 4501. https://doi.org/10.1016/j.ijhydene.2008.05.043.Suche in Google Scholar

45. Zhang, C., Meng, F. M., Wang, L. N. Mater. Lett. 2014, 119, 1. https://doi.org/10.1016/j.matlet.2013.12.087.Suche in Google Scholar

46. Liu, Z. Y., Wang, Q. Y., Rong, W. Q., Jin, R. C., Cui, Y. M., Gao, S. M. Separ. Purif. Technol. 2018, 200, 191. https://doi.org/10.1016/j.seppur.2018.02.034.Suche in Google Scholar

47. Yayapao, O., Thongtem, T., Phuruangrat, A., Thongtem, S. J. Alloys Compd. 2011, 509, 2294. https://doi.org/10.1016/j.jallcom.2010.10.204.Suche in Google Scholar

48. Zhang, P., Hua, X., Teng, X. X., Liu, D. S., Qin, Z. H., Ding, S. M. Mater. Lett. 2016, 185, 275. https://doi.org/10.1016/j.matlet.2016.08.148.Suche in Google Scholar

49. Li, N., Huang, W. X., Shi, Q. W., Zhang, Y. B., Song, L. W. Ceram. Int. 2013, 39, 6199. https://doi.org/10.1016/j.ceramint.2013.01.039.Suche in Google Scholar

50. Pan, C. S., Zhang, D. S., Shi, L. Y. J. Solid State Chem. 2008, 181, 1298. https://doi.org/10.1016/j.jssc.2008.02.011.Suche in Google Scholar

51. Rasouli, H., Naji, L. L., Hosseini, M. G. New J. Chem. 2018, 42, 12104. https://doi.org/10.1039/C8NJ00936H.Suche in Google Scholar

52. Pei, L. Z., Ma, Y., Qiu, F. L., Lin, F. F., Fan, C. G., Ling, X. Z. Curr. Anal. Chem. 2020, 16, 493. https://doi.org/10.2174/1573411014666181115125050.Suche in Google Scholar

53. Unmüssig, T., Weltin, A., Urban, S., Daubinger, P., Urban, G. A., Kieninger, J. J. Electroanal. Chem. 2018, 816, 215. https://doi.org/10.1016/j.jelechem.2018.03.061.Suche in Google Scholar

54. Li, H. M., Li, T., Wang, E. K. Talanta 1995, 42, 885. https://doi.org/10.1016/0039-9140(95)01502-3.Suche in Google Scholar PubMed

55. Hussain, M., Khaliq, N., Khan, A. A., Khan, M., Ali, G., Maqbool, M. Physica E 2021, 128, 114541. https://doi.org/10.1016/j.physe.2020.114541.Suche in Google Scholar

56. Pei, L. Z., Cai, Z. Y., Pei, Y. Q., Xie, Y. K., Fan, C. G., Fu, D. G. Russ. J. Electrochem. 2014, 50, 458. https://doi.org/10.1134/S1023193513110098.Suche in Google Scholar

57. Wu, S., Lan, X. Q., Huang, F. F., Luo, Z. Z., Ju, H. X., Meng, C. G., Duan, C. Y. Biosens. Bioelectron. 2012, 32, 293. https://doi.org/10.1016/j.bios.2011.12.006.Suche in Google Scholar PubMed

58. Bai, Y. H., Xu, J. J., Chen, H. Y. Biosens. Bioelectron. 2009, 24, 2985. https://doi.org/10.1016/j.bios.2009.03.008.Suche in Google Scholar PubMed

59. Pei, L. Z., Pei, Y. Q., Xie, Y. K., Fan, C. G., Li, D. K., Zhang, Q. F. J. Mater. Res. 2012, 27, 2391. https://doi.org/10.1557/jmr.2012.254.Suche in Google Scholar

60. Kurniawan, A., Kurniawan, F., Gunawan, F., Chou, S. H., Wang, M. J. Electrochim. Acta. 2019, 293, 318. https://doi.org/10.1016/j.electacta.2018.08.140.Suche in Google Scholar

61. Kumar, D. R., Baynosa, M. L., Shim, J. J. Sensor. Actuat. B: Chem 2019, 293, 107. https://doi.org/10.1016/j.snb.2019.04.122.Suche in Google Scholar

62. Atacan, K. J. Alloys Compd. 2019, 791, 391. https://doi.org/10.1016/j.jallcom.2019.03.303.Suche in Google Scholar

63. Deng, C. Y., Chen, J. H., Chen, X. L., Wang, M. D., Nie, Z., Yao, S. Z. Electrochim. Acta 2009, 54, 3298. https://doi.org/10.1016/j.electacta.2008.12.045.Suche in Google Scholar

64. Spataru, N., Sarada, B. V., Papa, E., Tryk, D. A., Fujishima, A. Anal. Chem. 2001, 73, 514. https://doi.org/10.1021/ac000220v.Suche in Google Scholar PubMed

65. Tang, X. F., Liu, Y., Hou, H. Q., You, T. Y. Talanta 2010, 80, 2182. https://doi.org/10.1016/j.talanta.2009.11.027.Suche in Google Scholar PubMed

66. Salimi, A., Hallaj, R. Talanta 2005, 66, 967. https://doi.org/10.1016/j.talanta.2004.12.040.Suche in Google Scholar PubMed

67. Fei, S. D., Chen, J. H., Yao, S. Z., Deng, G. H., He, D. L., Kuang, Y. F. Anal. Biochem. 2005, 339, 29. https://doi.org/10.1016/j.ab.2005.01.002.Suche in Google Scholar PubMed

68. Lai, Y. T., Ganguly, A., Chen, L. C., Chen, K. H. Biosens. Bioelectron. 2010, 26, 1688. https://doi.org/10.1016/j.bios.2010.07.005.Suche in Google Scholar PubMed

69. Yang, S. L., Li, G., Xia, N., Wang, Y. X., Liu, P. P., Qu, L. B. J. Alloys Compd. 2021, 853, 157077. https://doi.org/10.1016/j.jallcom.2020.157077.Suche in Google Scholar

70. Wang, Y. L., Peng, W., Liu, L., Gao, F., Li, M. G. Electrochim. Acta 2012, 70, 93. https://doi.org/10.1016/j.electacta.2012.03.106.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ijmr-2022-0338).


Received: 2022-07-25
Accepted: 2022-11-22
Published Online: 2023-02-16
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0338/pdf?lang=de
Button zum nach oben scrollen