Abstract
Bi2O3/Dy2O3 nanoflakes with triclinic Bi2O3 and cubic Dy2O3 phases were synthesized by a hexadecyl trimethyl ammonium bromide (CTAB)-assisted hydrothermal route. The Bi2O3/Dy2O3 nanoflakes were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, electron microscopy and electrochemical impedance spectroscopy. The size of the Bi2O3/Dy2O3 nanoflakes with curled surface is about 2 μm and thickness is about 25 nm. X-ray photoelectron spectroscopy confirms the chemical composition of the Bi2O3/Dy2O3 nanoflakes. The formation process of the Bi2O3/Dy2O3 nanoflakes was investigated by controlling the CTAB concentration, reaction temperature and reaction time. The formation of the Bi2O3/Dy2O3 nanoflakes depends on CTAB. The results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy demonstrate good electro-catalytic activity of the Bi2O3/Dy2O3 nanoflakes towards L-cysteine with a pair of quasi-reversible CV peaks at +0.01 V and –0.68 V, respectively. Bi2O3/Dy2O3 nanoflakes modified electrode detects L-cysteine linearly over a concentration ranging from 0.001 to 2 mM with a detection limit of 0.32 μM. The proposed nanocomposites modified electrode possesses good reproducibility and stability which can be used as a promising candidate for L-cysteine detection.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the Natural Science Foundation of Anhui Province of P. R. China (2008085ME172), National Scholarship Fund of China Scholarship Council (CSC) (202008340046) and Student Innovation and Entrepreneurship Training Program of P. R. China (202210360026).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Hosseini, H., Ahmar, H., Dehghani, A., Bagheri, A., Tadjarodi, A., Fakhari, A. R. Biosens. Bioelectron. 2013, 42, 426. https://doi.org/10.1016/j.bios.2012.09.062.Suche in Google Scholar PubMed
2. Gupta, V. K., Shamsadin-Azad, Z., Cheraghi, S., Agarwai, S., Taher, M. A., Karimi, F. Int. J. Electrochem. Sci. 2018, 13, 4309. https://doi.org/10.20964/2018.05.53.Suche in Google Scholar
3. Nie, L. H., Ma, H. M., Sun, M., Li, X. H., Su, M. H., Liang, S. C. Talanta 2003, 59, 959. https://doi.org/10.1016/s0039-9140(02)00649-5.Suche in Google Scholar
4. Rani, B. K., John, S. A. Biosens. Bioelectron. 2016, 83, 237. https://doi.org/10.1016/j.bios.2016.04.013.Suche in Google Scholar PubMed
5. Tu, C. Q., Wen, X. R. E3S Web. Conf. 2021, 245, 03023. https://doi.org/10.1051/e3sconf/202124503023.Suche in Google Scholar
6. Gavrilova, T. B., Kiselev, A. V., Kulikov, N. S., Vlasenko, E. V. Chromatographia 1986, 22, 59. https://doi.org/10.1007/BF02257299.Suche in Google Scholar
7. Kuśmierek, K., Głowacki, R., Bald, E. Anal. Bioanal. Chem. 2006, 385, 855. https://doi.org/10.1007/s00216-006-0454-x.Suche in Google Scholar PubMed
8. Yang, S. M., Zheng, Y., Zhang, X. R., Ding, S. Q., Li, L. L., Zha, W. L. J. Solid State Electrochem. 2016, 20, 2037. https://doi.org/10.1007/s10008-016-3213-8.Suche in Google Scholar
9. Pei, L. Z., Wei, T., Lin, N., Cai, Z. Y., Fan, C. G., Yang, Z. J. Electrochem. Soc. 2016, 163, H1. https://doi.org/110.1149/2.0041602jes.10.1149/2.0041602jesSuche in Google Scholar
10. Pei, L. Z., Wei, T., Lin, N., Zhang, H., Fan, C. G. Russ. J. Electrochem. 2018, 54, 84. https://doi.org/10.1134/s102319351711012x.Suche in Google Scholar
11. Upan, J., Lerdsri, J., Soongsong, J., Mool-am-kha, P., Sridara, T., Reanpang, P., Jakmunee, J. Analyst 2022, 147, 2170. https://doi.org/10.1039/D2AN00346E.Suche in Google Scholar PubMed
12. Jean, C. N., Bai, J., Qi, B., Guo, L. P. Anal. Biochem. 2009, 386, 79. https://doi.org/10.1016/j.ab.2008.11.041.Suche in Google Scholar PubMed
13. Razmi, H., Habibi, E. Electroanalysis 2009, 21, 867. https://doi.org/10.1002/elan.200804487.Suche in Google Scholar
14. Pei, L. Z., Pei, Y. Q., Xie, Y. K., Fan, C. G., Yu, H. Y. CrystEngComm 2013, 15, 1729. https://doi.org/10.1039/c2ce26592c.Suche in Google Scholar
15. Su, W. Y., Cheng, S. H. Electrochem. Commun. 2008, 10, 899. https://doi.org/10.1016/j.elecom.2008.04.013.Suche in Google Scholar
16. Zhou, M., Ding, J., Guo, L. P., Shang, Q. K. Anal. Chem. 2007, 79, 5328. https://doi.org/0.1021/ac0703707.10.1021/ac0703707Suche in Google Scholar PubMed
17. Ziyatdinova, G., Kozlova, E., Budnikov, H. Electrochim. Acta 2018, 270, 369. https://doi.org/10.1016/j.electacta.2018.03.102.Suche in Google Scholar
18. Varodi, C., Pogacean, F., Ciorita, A., Pana, O., Leostean, C., Cozar, B., Radu, T., Coros, M., Staden, R. I. S., Pruneanu, S. M. Chemosensors 2021, 9, 146. https://doi.org/10.3390/chemosensors9060146.Suche in Google Scholar
19. Atapour, M., Amoabediny, G., Ahmadzadeh-Raji, M. RSC Adv. 2019, 9, 8882. https://doi.org/10.1039/C8RA09659G.Suche in Google Scholar PubMed PubMed Central
20. Manibalan, G., Murugadoss, G., Thangamuthu, R., Kumar, M. R., Kumar, R. M., Jayavel, R. Inorg. Chem. Commun. 2020, 113, 107793. https://doi.org/10.1016/j.inoche.2020.107793.Suche in Google Scholar
21. Manibalan, G., Murugadoss, G., Thangamuthu, R., Kumar, M. R., Kumar, R. M. J. Alloys Compd. 2019, 792, 1151. https://doi.org/10.1016/j.jallcom.2019.04.127.Suche in Google Scholar
22. Ge, S. G., Yan, M., Lu, J. J., Zhang, M., Yu, F., Yu, J. H., Song, X. R., Yu, S. L. Biosens. Bioelectron. 2012, 31, 49. https://doi.org/10.1016/j.bios.2011.09.038.Suche in Google Scholar PubMed
23. Farsi, H., Moghminia, S., Roohi, A., Hosseini, S. A. Electrochim. Acta 2014, 148, 93. https://doi.org/10.1016/j.electacta.2014.10.040.10.1016/j.electacta.2014.10.040Suche in Google Scholar
24. Yamuna, A., Sundaresan, P., Chen, S. M. Ultrason. Sonochem. 2020, 64, 105014. https://doi.org/10.1016/j.ultsonch.2020.105014.Suche in Google Scholar PubMed
25. Kokulnathan, T., Vishnuraj, R., Wang, T. J., Kumar, E. A., Pullithadathil, B. Ecotoxicol. Environ. Saf. 2021, 207, 111276. https://doi.org/10.1016/j.ecoenv.2020.111276.Suche in Google Scholar PubMed
26. Das, T. R., Sharma, P. K. Microchem. J. 2019, 147, 1203. https://doi.org/10.1016/j.microc.2019.04.001.Suche in Google Scholar
27. Geoffrion, L. D., Medina-Cruz, D., Kusper, M., Elsaidi, S., Watanabe, F., Parajuli, P., Ponce, A., Hoang, T. B., Brintlinger, T., Webster, T. J., Guisbiers, G. Nanoscale Adv. 2021, 3, 4106. https://doi.org/10.1039/D0NA00910E.Suche in Google Scholar PubMed PubMed Central
28. Hu, Q. C., Cheng, X. L., Zhang, X. F., Xu, Y. M., Gao, S., Zhao, H., Major, Z., Huo, L. H. Sensor. Actuator. B Chem. 2020, 305, 127434. https://doi.org/10.1016/j.snb.2019.127434.Suche in Google Scholar
29. Rajendran, V., Mekala, R. J. Alloys Compd. 2018, 741, 1055. https://doi.org/10.1016/j.jallcom.2018.01.086.Suche in Google Scholar
30. Dong, X., Cheng, X. L., Zhang, X. F., Sui, L. L., Xu, Y. M., Gao, S., Zhao, H., Huo, L. H. Sensor. Actuator. B Chem. 2018, 255, 1308. https://doi.org/10.1016/j.snb.2017.08.117.Suche in Google Scholar
31. Gopinath, K., Chinnadurai, M., Devi, N. P., Bhakyaraj, K., Kumaraguru, S., Baranisri, T., Sudha, A., Zeeshan, M., Arumugam, A., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Benelli, G. J. Cluster Sci. 2017, 28, 621. https://doi.org/10.1007/s10876-016-1150-4.Suche in Google Scholar
32. Safari-Amiri, M., Moriazavi-Derazkola, S., Salavatl-Ntasari, M., Ghoreishi, S. M. J. Mater. Sci. Mater. Electron. 2017, 28, 6467. https://doi.org/10.1007/s10854-017-6333-8.Suche in Google Scholar
33. Chandar, N. K., Jayavel, R. J. Phys. Chem. Solid. 2012, 73, 1164. https://doi.org/10.1016/j.jpcs.2012.05.009.Suche in Google Scholar
34. Liu, W. C., Qu, Y., Li, H., Ji, F. J., Dong, H. L., Wu, M. K., Chen, H., Lin, Z. D. Sensor. Actuator. B Chem. 2019, 294, 224. https://doi.org/10.1016/j.snb.2019.05.042.Suche in Google Scholar
35. Qiu, F. L., Wang, Z., Chen, H. J., Ma, Y., Wu, H., Yan, L., Pei, L. Z., Fan, C. G. Curr. Nanosci. 2020, 16, 805. https://doi.org/10.2174/1573413715666191212153902.Suche in Google Scholar
36. Wang, Z., Chen, H. J., Qiu, F. L., Xue, Z. Y., Yu, C. H., Wang, P. X., Cong, Q. M., Pei, L. Z., Fan, C. G., Zhang, Y. Curr. Nanosci. 2021, 17, 315. https://doi.org/10.2174/1573413716999200817120339.Suche in Google Scholar
37. Wu, Y. X., Xu, M. Q., Chen, X., Yang, S. L., Wu, H. H., Pan, J., Xiong, X. Nanoscale 2016, 8, 440. https://doi.org/10.1039/C5NR05748E.Suche in Google Scholar PubMed
38. Uddin, A., Muhmood, T., Guo, Z. C., Gu, J. Y., Chen, H., Jiang, F. J. Alloys Compd. 2020, 845, 156206. https://doi.org/10.1016/j.jallcom.2020.156206.Suche in Google Scholar
39. He, H. Y., He, Z., Shen, Q. Int. J. Hydrogen Energy 2018, 43, 21835. https://doi.org/10.1016/j.ijhydene.2018.10.023.Suche in Google Scholar
40. Zheng, J. H., Zhang, L. Chem. Eng. J. 2019, 369, 947. https://doi.org/10.1016/j.cej.2019.03.131.Suche in Google Scholar
41. Luo, Y. P., Chen, J., Liu, J. W., Shao, Y., Li, X. F., Li, D. Z. Appl. Catal. B Environ. 2016, 182, 533. https://doi.org/10.1016/j.apcatb.2015.09.051.Suche in Google Scholar
42. Kannan, V., Arredondo, M., Johann, F., Hesse, D., Labrugere, C., Maglione, M., Vrejoiu, I. Thin Solid Films 2013, 545, 130. https://doi.org/10.1016/j.tsf.2013.07.053.Suche in Google Scholar
43. Gokhale, S., Ahmed, N., Mahamuni, S., Rao, V. J., Nigavekar, A. S., Kulkarni, S. K. Surf. Sci. 1989, 210, 85. https://doi.org/10.1016/0039-6028(89)90104-0.Suche in Google Scholar
44. Shen, S. H., Zhao, L., Guo, L. J. Int. J. Hydrogen Energy 2008, 33, 4501. https://doi.org/10.1016/j.ijhydene.2008.05.043.Suche in Google Scholar
45. Zhang, C., Meng, F. M., Wang, L. N. Mater. Lett. 2014, 119, 1. https://doi.org/10.1016/j.matlet.2013.12.087.Suche in Google Scholar
46. Liu, Z. Y., Wang, Q. Y., Rong, W. Q., Jin, R. C., Cui, Y. M., Gao, S. M. Separ. Purif. Technol. 2018, 200, 191. https://doi.org/10.1016/j.seppur.2018.02.034.Suche in Google Scholar
47. Yayapao, O., Thongtem, T., Phuruangrat, A., Thongtem, S. J. Alloys Compd. 2011, 509, 2294. https://doi.org/10.1016/j.jallcom.2010.10.204.Suche in Google Scholar
48. Zhang, P., Hua, X., Teng, X. X., Liu, D. S., Qin, Z. H., Ding, S. M. Mater. Lett. 2016, 185, 275. https://doi.org/10.1016/j.matlet.2016.08.148.Suche in Google Scholar
49. Li, N., Huang, W. X., Shi, Q. W., Zhang, Y. B., Song, L. W. Ceram. Int. 2013, 39, 6199. https://doi.org/10.1016/j.ceramint.2013.01.039.Suche in Google Scholar
50. Pan, C. S., Zhang, D. S., Shi, L. Y. J. Solid State Chem. 2008, 181, 1298. https://doi.org/10.1016/j.jssc.2008.02.011.Suche in Google Scholar
51. Rasouli, H., Naji, L. L., Hosseini, M. G. New J. Chem. 2018, 42, 12104. https://doi.org/10.1039/C8NJ00936H.Suche in Google Scholar
52. Pei, L. Z., Ma, Y., Qiu, F. L., Lin, F. F., Fan, C. G., Ling, X. Z. Curr. Anal. Chem. 2020, 16, 493. https://doi.org/10.2174/1573411014666181115125050.Suche in Google Scholar
53. Unmüssig, T., Weltin, A., Urban, S., Daubinger, P., Urban, G. A., Kieninger, J. J. Electroanal. Chem. 2018, 816, 215. https://doi.org/10.1016/j.jelechem.2018.03.061.Suche in Google Scholar
54. Li, H. M., Li, T., Wang, E. K. Talanta 1995, 42, 885. https://doi.org/10.1016/0039-9140(95)01502-3.Suche in Google Scholar PubMed
55. Hussain, M., Khaliq, N., Khan, A. A., Khan, M., Ali, G., Maqbool, M. Physica E 2021, 128, 114541. https://doi.org/10.1016/j.physe.2020.114541.Suche in Google Scholar
56. Pei, L. Z., Cai, Z. Y., Pei, Y. Q., Xie, Y. K., Fan, C. G., Fu, D. G. Russ. J. Electrochem. 2014, 50, 458. https://doi.org/10.1134/S1023193513110098.Suche in Google Scholar
57. Wu, S., Lan, X. Q., Huang, F. F., Luo, Z. Z., Ju, H. X., Meng, C. G., Duan, C. Y. Biosens. Bioelectron. 2012, 32, 293. https://doi.org/10.1016/j.bios.2011.12.006.Suche in Google Scholar PubMed
58. Bai, Y. H., Xu, J. J., Chen, H. Y. Biosens. Bioelectron. 2009, 24, 2985. https://doi.org/10.1016/j.bios.2009.03.008.Suche in Google Scholar PubMed
59. Pei, L. Z., Pei, Y. Q., Xie, Y. K., Fan, C. G., Li, D. K., Zhang, Q. F. J. Mater. Res. 2012, 27, 2391. https://doi.org/10.1557/jmr.2012.254.Suche in Google Scholar
60. Kurniawan, A., Kurniawan, F., Gunawan, F., Chou, S. H., Wang, M. J. Electrochim. Acta. 2019, 293, 318. https://doi.org/10.1016/j.electacta.2018.08.140.Suche in Google Scholar
61. Kumar, D. R., Baynosa, M. L., Shim, J. J. Sensor. Actuat. B: Chem 2019, 293, 107. https://doi.org/10.1016/j.snb.2019.04.122.Suche in Google Scholar
62. Atacan, K. J. Alloys Compd. 2019, 791, 391. https://doi.org/10.1016/j.jallcom.2019.03.303.Suche in Google Scholar
63. Deng, C. Y., Chen, J. H., Chen, X. L., Wang, M. D., Nie, Z., Yao, S. Z. Electrochim. Acta 2009, 54, 3298. https://doi.org/10.1016/j.electacta.2008.12.045.Suche in Google Scholar
64. Spataru, N., Sarada, B. V., Papa, E., Tryk, D. A., Fujishima, A. Anal. Chem. 2001, 73, 514. https://doi.org/10.1021/ac000220v.Suche in Google Scholar PubMed
65. Tang, X. F., Liu, Y., Hou, H. Q., You, T. Y. Talanta 2010, 80, 2182. https://doi.org/10.1016/j.talanta.2009.11.027.Suche in Google Scholar PubMed
66. Salimi, A., Hallaj, R. Talanta 2005, 66, 967. https://doi.org/10.1016/j.talanta.2004.12.040.Suche in Google Scholar PubMed
67. Fei, S. D., Chen, J. H., Yao, S. Z., Deng, G. H., He, D. L., Kuang, Y. F. Anal. Biochem. 2005, 339, 29. https://doi.org/10.1016/j.ab.2005.01.002.Suche in Google Scholar PubMed
68. Lai, Y. T., Ganguly, A., Chen, L. C., Chen, K. H. Biosens. Bioelectron. 2010, 26, 1688. https://doi.org/10.1016/j.bios.2010.07.005.Suche in Google Scholar PubMed
69. Yang, S. L., Li, G., Xia, N., Wang, Y. X., Liu, P. P., Qu, L. B. J. Alloys Compd. 2021, 853, 157077. https://doi.org/10.1016/j.jallcom.2020.157077.Suche in Google Scholar
70. Wang, Y. L., Peng, W., Liu, L., Gao, F., Li, M. G. Electrochim. Acta 2012, 70, 93. https://doi.org/10.1016/j.electacta.2012.03.106.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ijmr-2022-0338).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modeling the band gap of spinel nano-ferrite material using a genetic algorithm based support vector regression computational method
- Influence of surfactant concentration on structural properties and corrosion behaviour of electrodeposited Ni–SiO2 nanocomposite coatings
- Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions
- Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination
- Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes
- Finite element assisted self-consistent simulations to capture texture heterogeneity during hot compression
- Improving mechanical properties of additive manufactured AZ31 by mechanical rolling
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modeling the band gap of spinel nano-ferrite material using a genetic algorithm based support vector regression computational method
- Influence of surfactant concentration on structural properties and corrosion behaviour of electrodeposited Ni–SiO2 nanocomposite coatings
- Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions
- Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination
- Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes
- Finite element assisted self-consistent simulations to capture texture heterogeneity during hot compression
- Improving mechanical properties of additive manufactured AZ31 by mechanical rolling
- News
- DGM – Deutsche Gesellschaft für Materialkunde