Home Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions
Article
Licensed
Unlicensed Requires Authentication

Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions

  • Mai Duc Dung , Bui Thi Hue , Luong Thi Kim Phuong , Le Thi Giang , Le Viet Bau and Nguyen Thi Lan EMAIL logo
Published/Copyright: February 17, 2023
Become an author with De Gruyter Brill

Abstract

Reduced graphene oxide/maghemite (RGO/γ-Fe2O3) material was successfully synthesized by combining the modified Hummers method with co-precipitation (RGO 10 wt.%). γ-Fe2O3 nanoparticles with a particle size of ∼14.8 nm were distributed on the surface of RGO sheets. Results of Brunauer–Emmett–Teller analysis showed that RGO/γ-Fe2O3 had a mesoporous structure and a narrow capillary size distribution curve at about 13 nm. The specific surface area of the RGO/γ-Fe2O3 was 168 m2·g−1. The RGO/γ-Fe2O3 nanocomposite was used to adsorb arsenic As(V) and a mixture of heavy metals (As(V), Cr(VI), Pb(II), and Fe(III)) in water. The maximum adsorption efficiency of As(V) reached 98.9% after 45 min with an adsorption capacity of 5.93 mg·g−1, higher than the simultaneous adsorption of the four metal ions. Competitive adsorption decreased in the order As(V), Cr(VI), Pb(II), and Fe(III). Therefore, RGO/γ-Fe2O3 could be used as an effective adsorbent to remove heavy metals from aqueous solutions.


Corresponding author: Nguyen Thi Lan, Advanced Institute for Science and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam, E-mail: .

Acknowledgments

The authors thank Cuong N. D. of AIST for the useful discussions and Loan T. T. of ITIMS for the XRD analysis through Rietveld refinement method and this manuscript’s proofreading.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Hanoi University of Science and Technology under grant number T2020–SAHEP–035.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Guo, X., Du, B., Wei, Q., Yang, J., Yan, L., Xu, W. J. Hazard Mater. 2014, 278, 211–220. https://doi.org/10.1016/j.jhazmat.2014.05.075.Search in Google Scholar PubMed

2. Vu, H. C., Dwivedi, A. D., Le, T. T., Seo, S. H., Kim, E. J., Chang, Y. S. Chem. Eng. J. 2017, 307, 220–229. https://doi.org/10.1016/j.cej.2016.08.058.Search in Google Scholar

3. Singh, R., Singh, S., Parihar, P., Singh, V. P., Prasad, S. M. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. https://doi.org/10.1016/j.ecoenv.2014.10.009.Search in Google Scholar PubMed

4. Li, W., Zhang, L., Peng, J., Li, N., Zhang, S., Guo, S. Ind. Crops Prod. 2008, 28, 294–302. https://doi.org/10.1016/j.indcrop.2008.03.007.Search in Google Scholar

5. Zamani, H. A., Ganjali, M. R., Faridbod, F., Salavati-Niasari, M. Mater. Sci. Eng. C 2012, 32, 564–568. https://doi.org/10.1016/j.msec.2011.12.009.Search in Google Scholar

6. Zong, P., Wang, S., Zhao, Y., Wang, H., Pan, H., He, C. Chem. Eng. J. 2013, 220, 45–52. https://doi.org/10.1016/j.cej.2013.01.038.Search in Google Scholar

7. Maksoud, A., Elgarahy, A. M., Farrell, C., Al-Muhtaseb, A. H., Rooney, D. W., Osman, A. I. Coord. Chem. Rev. 2020, 403, 213096. https://doi.org/10.1016/j.ccr.2019.213096.Search in Google Scholar

8. Ghasemabadi, S. M., Baghdadi, M., Safari, E., Ghazban, F. J. Environ. Chem. Eng. 2018, 6, 4840–4849. https://doi.org/10.1016/j.jece.2018.07.014.Search in Google Scholar

9. Ubhi, M. K., Kaur, M., Singh, D., Greneche, J. M. Process. Appl. Ceram. 2017, 11, 247–257. https://doi.org/10.2298/PAC1704247K.Search in Google Scholar

10. You, J., Zhao, Y., Wang, L., Bao, W., He, Y. J. Phys. Chem. Solids 2020, 142, 109441. https://doi.org/10.1016/j.jpcs.2020.109441.Search in Google Scholar

11. Barbosa de Andrade, M., Sestito Guerra, A. C., Tonial Dos Santos, T. R., Cusioli, L. F., De Souza Antonio, R., Bergamasco, R. J. Environ. Chem. Eng. 2020, 8, 103903. https://doi.org/10.1016/j.jece.2020.103903.Search in Google Scholar

12. Wang, Y., Wei, X., Qi, Y., Huang, H. Chemosphere 2021, 263, 127563. https://doi.org/10.1016/j.chemosphere.2020.127563.Search in Google Scholar PubMed

13. Dung, M. D., Nga, T. T. V., Lan, N. T., Thanh, N. K. Anal. Sci. 2022, 38, 427–436. https://doi.org/10.1007/s44211-022-00064-z.Search in Google Scholar PubMed

14. Hai, N. H., Phu, N. D., Luong, N. H., Chau, N., Chinh, H. D., Hoang, L. H., Leslie-Pelecky, D. L. J. Kor. Phys. Soc. 2008, 52, 1327–1331. https://doi.org/10.3938/jkps.52.1327.Search in Google Scholar

15. Lan, N. T., Chi, D. T., Dinh, N. X., Hung, N. D., Lan, H., Tuan, P. A., Thang, L. H., Trung, N. N., Hoa, N. Q., Huy, T. Q., Quy, N. V., Duong, T. T., Phan, V. N., Le, A. T. J. Alloys Compd. 2014, 615, 843–848. https://doi.org/10.1016/j.jallcom.2014.07.042.Search in Google Scholar

16. Wyckoff, R. W. G. Crystal Structures, 2nd ed.; Interscience Publishers: New York, vol. 1, 1963.Search in Google Scholar

17. Pecharroman, C., Gonzalezcarreno, T., Iglesias, J. E. Phys. Chem. Miner. 1995, 22, 21–29. https://doi.org/10.1007/BF00202677.Search in Google Scholar

18. Loan, T. T., Huy, D. K., Chung, H. M., Thanh, N. K., Hoan, T. D., Duong, N. P., Soontaranon, S., Klysubun, W. Mater. Today Commun. 2021, 26, 101733. https://doi.org/10.1016/j.mtcomm.2020.101733.Search in Google Scholar

19. Chandrasekaran, S., Hur, S. H., Kim, E. J., Rajagopalan, B., Babu, K. F., Senthilkumar, V., Chung, J. S., Choi, W. M., Kim, Y. S. RSC Adv. 2015, 5, 29159–29166. https://doi.org/10.1039/C5RA02934A.Search in Google Scholar

20. Aliahmad, M., Moghaddam, N. S. Mater. Sci. Pol. 2013, 31, 264–268. https://doi.org/10.2478/s13536-012-0100-6.Search in Google Scholar

21. Liang, C., Liu, H., Zhou, J., Peng, X., Zhang, H. J. Chem. 2015, 2015, 791829. https://doi.org/10.1155/2015/791829.Search in Google Scholar

22. Hung, P. V., Cuong, T. V., Hur, S. H., Oh, E., Kim, E. J., Shin, E. W., Chung, J. S. J. Mater. Chem. 2011, 21, 3371–3377. https://doi.org/10.1039/C0JM02790A.Search in Google Scholar

23. Abdulhadi Alwahib, A. A., Kamil, Y. M., Abu Bakar, M. H., Muhammad Noor, A. S., Yaacob, M. H., Lim, H. N., Huang, N. M., Mahdi, M. A. IEEE Photonics J. 2018, 10, 4801310. https://doi.org/10.1109/JPHOT.2018.2877190.Search in Google Scholar

24. Shi, H., Li, W., Zhong, L., Xu, C. Ind. Eng. Chem. Res. 2014, 53, 1108–1118. https://doi.org/10.1021/ie4027154.Search in Google Scholar

25. Salviano, L. B., Da Silva Cardoso, T. M., Silva, G. C., Dantas, M. S. S., Ferreira, A. M. Mat. Res. 2018, 21, 20170764. https://doi.org/10.1590/1980-5373-mr-2017-0764.Search in Google Scholar

26. Feng, Q., Chen, Z., Zhou, K., Sun, M., Ji, X., Zheng, H., Zhang, Y. ChemistrySelect 2021, 6, 8177–8181. https://doi.org/10.1002/slct.202101844.Search in Google Scholar

27. Zubir, N. A., Yacou, C., Motuzas, J., Zhang, X., Diniz Da Costa, J. C. Sci. Rep. 2014, 4, 4594. https://doi.org/10.1038/srep04594.Search in Google Scholar PubMed PubMed Central

28. Ashok Kumar, K. V., Chandana, L., Ghosal, P., Subrahmanyam, C. Mol. Catal. 2018, 451, 87–95. https://doi.org/10.1016/j.mcat.2017.11.014.Search in Google Scholar

29. Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I. C., Kim, K. S. ACS Nano 2010, 4, 3979–3986. https://doi.org/10.1021/nn1008897.Search in Google Scholar PubMed

30. Gomaa, H., Shenashen, M. A., Yamaguchi, H., Alamoudi, A. S., Abdelmottaleb, M., Cheira, M. F., Seaf El-Naser, T. A., El-Safty, S. A. J. Clean. Prod. 2018, 182, 910–925. https://doi.org/10.1016/j.jclepro.2018.02.063.Search in Google Scholar

Received: 2021-10-21
Accepted: 2022-09-22
Published Online: 2023-02-17
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8612/html
Scroll to top button