Startseite Ultraviolet-B radiation from Gd (III) doped hardystonite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ultraviolet-B radiation from Gd (III) doped hardystonite

  • Vijay Singh EMAIL logo , Ch. B Annapurna Devi , A. S. Rao und Ji Bong Joo
Veröffentlicht/Copyright: 18. August 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Trivalent gadolinium (Gd3+)-doped calcium zinc silicate (Ca2ZnSi2O7/hardystonite) with a molar composition of Ca2−xZnSi2O7:xGd3+ (x = 0.09 mol) was produced using a sol–gel system. The hardystonite was characterized using X-ray diffraction and Fourier transform infrared spectroscopy. The X-ray diffraction study revealed that the prepared sample contained a tetragonal phase of Ca2ZnSi2O7. The vibrational structures of the sample were studied using Fourier transform infrared spectroscopy measurements. The photoluminescence emission spectrum of the Ca1.91ZnSi2O7:0.09Gd3+ phosphor narrow band was optimized at 312 nm in the Ultraviolet-B region under excitation at 273 nm wavelength. Electron paramagnetic resonance study authenticates the presence of gadolinium (Gd) ions within the trivalent state in the Ca1.91ZnSi2O7:0.09Gd3+ host.


Corresponding author: Vijay Singh, Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This paper was supported by the KU Research Professor Program of Konkuk University. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1092509).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gurav, J. L., Rao, A. V., Rao, A. P., Nadargi, D. Y., Bhagat, S. D. J. Alloys Compd. 2009, 476, 397. https://doi.org/10.1016/j.jallcom.2008.09.029.Suche in Google Scholar

2. Lv, W., Guo, N., Jia, Y., Zhao, Q., You, H. Opt. Mater. 2013, 35, 1013. https://doi.org/10.1016/j.optmat.2012.12.014.Suche in Google Scholar

3. Latifi, N., Eisazadeh, A., Marto, A. Environ. Earth Sci. 2014, 72, 91. https://doi.org/10.1007/s12665-013-2939-1.Suche in Google Scholar

4. Singh, V., Annapurna Devi, Ch. B., Kaur, S., Rao, A. S., Singh, N. Optik 2021, 242, 167268. https://doi.org/10.1016/j.ijleo.2021.167268.Suche in Google Scholar

5. Zaarei, D., Sarabi, A. A., Sharif, F., Kassiriha, S. M. J. Coat. Technol. Res. 2008, 5, 241. https://doi.org/10.1007/s11998-007-9065-5.Suche in Google Scholar

6. Jung, K. Y., Kim, J. H., Kang, Y. C. J. Lumin. 2009, 129, 615. https://doi.org/10.1016/j.jlumin.2009.01.001.Suche in Google Scholar

7. Singh, V., Annapurna Devi, Ch. B., Rupa Venkateswara Rao, B., Rao, A. S. J. Electron. Mater. 2023, 52, 50. https://doi.org/10.1007/s11664-022-10035-9.Suche in Google Scholar

8. Das, S., Manam, J., Sharma, S. K. New J. Chem. 2017, 41, 5934. https://doi.org/10.1039/C7NJ00209B.Suche in Google Scholar

9. Singh, V., Annapurna Devi, Ch. B., Kaur, S., Rao, A. S., Singh, N. Optik 2021, 243, 167322. https://doi.org/10.1016/j.ijleo.2021.167322.Suche in Google Scholar

10. Gong, Y., Wang, Y., Jiang, Z., Xu, X., Li, Y. Mater. Res. Bull. 2009, 44, 1916. https://doi.org/10.1016/j.materresbull.2009.05.003.Suche in Google Scholar

11. Sahu, I. P., Bisen, D. P., Brahme, N. Luminescence 2015, 30, 526. https://doi.org/10.1002/bio.2771.Suche in Google Scholar PubMed

12. Zhang, H. W., Yamada, H., Terasaki, N., Xu, C. N. J. Electrochem. Soc. 2008, 155, J55. https://doi.org/10.1149/1.2816215.Suche in Google Scholar

13. Qiuhonga, Z., Jingb, W., Haiyonga, N., Linglia, W. Rare Met. 2012, 31, 35. https://doi.org/10.1007/s12598-012-0458-y.Suche in Google Scholar

14. Zhang, M., Wang, J., Ding, W., Zhang, Q. Opt. Mater. 2007, 30, 571. https://doi.org/10.1016/j.optmat.2007.01.008.Suche in Google Scholar

15. Kodama, N., Tanii, Y., Yamaga, M. J. Lumin. 2000, 87-89, 1076. https://doi.org/10.1016/S0022-2313(99)00543-8.Suche in Google Scholar

16. Tiwari, G., Brahme, N., Sharma, R., Bisen, D. P., Sao, S. K., Dhoble, S. J. RSC Adv. 2016, 6, 49317. https://doi.org/10.1039/C6RA04913C.Suche in Google Scholar

17. Jaroszewski, K., Głuchowski, P., Chrunik, M., Jastrząb, R., Majchrowski, A., Kasprowicz, D. Opt. Mater. 2018, 75, 13. https://doi.org/10.1016/j.optmat.2017.10.013.Suche in Google Scholar

18. Ma, J., Huang, B. X., Zhao, X. C., Hao, X. H., Wang, C. Z. Mater. Lett. 2019, 236, 566. https://doi.org/10.1016/j.matlet.2018.11.017.Suche in Google Scholar

19. Singh, V., Kaur, S., Annapurna Devi, Ch. B., Rao, A. S., Joo, Ji. B. Optik 2022, 266, 169553. https://doi.org/10.1016/j.ijleo.2022.169553.Suche in Google Scholar

20. Mohammadi, H., Hafezi, M., Nezafati, N., Heasarki, S., Nadernezhad, A., Ghazanfari, S. M. H., Sepantafar, M. J. Ceram. Sci. Technol. 2014, 5, 1. https://doi.org/10.4416/JCST2013-00027.Suche in Google Scholar

21. Wu, C., Ramaswamy, Y., Soeparto, A., Zreiqat, H. J. Biomed. Mater. Res. A 2008, 86, 402. https://doi.org/10.1002/jbm.a.31623.Suche in Google Scholar PubMed

22. Wu, C., Ramaswamy, Y., Chang, J., Woods, J., Chen, Y., Zreiqat, H. J. Biomed. Mater. Res. B 2008, 87B, 346. https://doi.org/10.1002/jbm.b.31109.Suche in Google Scholar PubMed

23. Kamioka, H., Yamaguchi, T., Hirano, M., Kamiya, T., Hosono, H. J. Lumin. 2007, 122–123, 339. https://doi.org/10.1016/j.jlumin.2006.01.171.Suche in Google Scholar

24. Jiang, L., Xiao, S., Yang, X., Zhang, X., Liu, X., Zhou, B., Jin, X. Mater. Sci. Eng. B 2013, 178, 123. https://doi.org/10.1016/j.jlumin.2006.01.171.Suche in Google Scholar

25. Mondal, K., Manam, J. J. Lumin. 2018, 195, 259. https://doi.org/10.1016/j.jlumin.2017.11.028.Suche in Google Scholar

26. Neeraj, S., Kijima, N., Cheetham, A. K. Solid State Commun. 2004, 131, 65. https://doi.org/10.1016/j.ssc.2004.03.050.Suche in Google Scholar

27. Zhang, X., Li, W., Jang, K. H., Seo, H. J. Curr. Appl. Phys. 2012, 12, 299. https://doi.org/10.1016/j.cap.2011.06.024.Suche in Google Scholar

28. Singh, V., Annapurna Devi, Ch. B., Rao, B. R. V., Rao, A. S., Singh, N., Mistry, B. M. Optik 2021, 226, 165932. https://doi.org/10.1016/j.ijleo.2020.165932.Suche in Google Scholar

29. Chauhan, A. O., Gawande, A. B., Omanwar, S. K. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1023. https://doi.org/10.1007/s10904-016-0415-6.Suche in Google Scholar

30. Singh, V., Kokate, S., Natarajan, V. Optik 2020, 204, 164016. https://doi.org/10.1016/j.ijleo.2019.164016.Suche in Google Scholar

31. Singh, V., Singh, N., Pathak, M. S., Natarajan, V., Jadhav, N. A. Optik 2019, 176, 650. https://doi.org/10.1016/j.ijleo.2018.09.021.Suche in Google Scholar

32. Chen, F., Bu, W., Zhang, S., Liu, X., Liu, J., Xing, H., Xiao, Q., Zhou, L., Peng, W., Wang, L., Shi, J. Adv. Funct. Mater. 2011, 21, 4285. https://doi.org/10.1002/adfm.201101663.Suche in Google Scholar

33. Yang, L. W., Zhang, Y. Y., Li, J. J., Li, Y., Zhong, J. X., Chu, P. K. Nanoscale 2010, 2, 2805. https://doi.org/10.1039/C0NR00326C.Suche in Google Scholar PubMed

34. Chen, G., Liang, H., Liu, H., Somesfalean, G., Zhang, Z. Opt. Express 2009, 17, 16366. https://doi.org/10.1364/OE.17.016366.Suche in Google Scholar PubMed

35. Lee, S. H., Kim, B. H., Na, H. B., Hyeon, T. Nanomed. Nanotechnol. 2014, 6, 196. https://doi.org/10.1002/wnan.1243.Suche in Google Scholar PubMed

36. Xiao, Y.-D., Paudel, R., Liu, J., Ma, C., Zhang, Z.-S., Zhou, S.-K. Int. J. Mol. Med. 2016, 38, 1319. https://doi.org/10.3892/ijmm.2016.2744.Suche in Google Scholar PubMed

37. Yan, G.-P., Robinson, L., Hogg, P. Radiography 2007, 13, e5. https://doi.org/10.1016/j.radi.2006.07.005.Suche in Google Scholar

38. Singh, V., Annapurna Devi, Ch. B., Rao, A. S., Rao, J. L. Optik 2020, 208, 163632. https://doi.org/10.1016/j.ijleo.2019.163632.Suche in Google Scholar

39. Singh, V., Borkotoky, S., Murali, A., Rao, J. L., Gundu Rao, T. K., Dhoble, S. J. Spectrochim. Acta Part A 2015, 139, 1. https://doi.org/10.1016/j.saa.2014.11.097.Suche in Google Scholar PubMed

40. Prokhorov, A. D., Prokhorov, A. A., Chernush, L. F., Minyakaev, R., Dyakonov, V. P., Szymczak, H. Phys. Status Solidi B 2014, 251, 201. https://doi.org/10.1002/pssb.201350026.Suche in Google Scholar

41. Hu, Q., Suzuki, H., Gao, H., Araki, H., Yang, W., Noda, T. Chem. Phys. Lett. 2003, 378, 299. https://doi.org/10.1016/j.cplett.2003.07.015.Suche in Google Scholar

42. Tomozawa, M., Hong, J. W., Ryu, S. R. J. Non-Cryst. Solids 2005, 351, 12. https://doi.org/10.1016/j.jnoncrysol.2005.01.017.Suche in Google Scholar

43. Furukawa, T., Fox, K. E., Whited, W. B. J. Chem. Phys. 1981, 75, 3226. https://doi.org/10.1063/1.44247.Suche in Google Scholar

44. Sava, B. A., Vişan, T. U.P.B. Sci. Bull. Series B 2007, 69, 11–24.Suche in Google Scholar

45. GaluskIna, I. О., lazIc, B., Armbruster, T., Galuskin, E. V., Gazeev, V. M., Zadov, A. E., Pertsev, N. N., Jeżak, L., Wrzalik, R., Gurbanov, A. G. Am. Mineral. 2009, 94, 1361. https://doi.org/10.2138/am.2009.3256.Suche in Google Scholar

46. Schild, C., Wokaun, A., Baiker, A. J. Mol. Catal. 1990, 63, 223. https://doi.org/10.1016/0304-5102(90)85147-A.Suche in Google Scholar

47. Rege, S. U., Yang, R. T. Chem. Eng. Sci. 2001, 56, 3781. https://doi.org/10.1016/S0009-2509(01)00095-1.Suche in Google Scholar

48. Mokoena, P. P. Narrowband Ultraviolet B Emission from Gadolinium and Praseodymium Co-Activated Calcium Phosphate Phosphors for Phototherapy Lamps. MS Thesis, University of the Free State, South Africa, 2014. http://hdl.handle.net/11660/2187.Suche in Google Scholar

49. Gandhi, Y., Rajanikanth, P., Rao, M. S., Kumar, V. R., Veeraiah, N., Piasecki, M. Opt. Mater. 2016, 57, 39. https://doi.org/10.1016/j.optmat.2016.04.015.Suche in Google Scholar

50. Ramteke, D. D., Gedam, R. S. J. Rare Earths 2014, 32, 389. https://doi.org/10.1016/S1002-0721(14)60082-X.Suche in Google Scholar

51. Padlyak, B. V., Drzewiecki, A., Padlyak, T. B., Adamiv, V. T., Teslyuk, I. M. Opt. Mater. 2018, 79, 302. https://doi.org/10.1016/j.optmat.2018.03.050.Suche in Google Scholar

52. Chauhan, A. O., Gawande, A. B., Omanwar, S. K. Optik 2016, 127, 6647. https://doi.org/10.1016/j.ijleo.2016.04.131.Suche in Google Scholar

53. Mohapatra, M., Rajeswari, B., Hon, N. S., Kadam, R. M., Keskar, M. S., Natarajan, V. Ceram. Int. 2015, 41, 8761. https://doi.org/10.1016/j.ceramint.2015.03.099.Suche in Google Scholar

54. Tang, C., Liu, S., Liu, L., DanChen, P. J. Lumin. 2015, 160, 317. https://doi.org/10.1016/j.jlumin.2014.12.033.Suche in Google Scholar

55. Weinstein, G. D., Gottlieb, A. B. Therapy of Moderate-To-Severe-Psoriasis, 2nd ed.; CRC Press: Boca Raton, Florida, 2003.10.1201/b14220Suche in Google Scholar

56. Sonekar, R. P., Omanwar, S. K., Moharil, S. V., Dhopte, S. M., Muthal, P. L., Kondawar, V. K. Opt. Mater. 2007, 30, 622. https://doi.org/10.1016/j.optmat.2007.02.016.Suche in Google Scholar

57. Rao, A. S., Rao, J. L., Ravi Kanth Kumar, V. V., Jayasankar, C. K., Lakshman, S. V. J. Phys. Status Solidi B 1992, 174, 183. https://doi.org/10.1002/pssb.2221740118.Suche in Google Scholar

58. Petersen, M., Hafner, J., Marsman, M. J. Phys. Condens Matter. 2006, 18, 7021. https://doi.org/10.1088/0953-8984/18/30/007.Suche in Google Scholar

59. Brodbeck, C. M., Iton, L. E. J. Chem. Phys. 1985, 83, 4285. https://doi.org/10.1063/1.445922.Suche in Google Scholar

60. Griscom, D. L. J. Non-Cryst. Solids 1980, 40, 211. https://doi.org/10.1016/0022-3093(80)90105-2.Suche in Google Scholar

61. Iton, L. E., Brodbeck, C. M., Suib, S. L., Stucky, G. D. J. Chem. Phys. 1983, 79, 1185. https://doi.org/10.1063/1.445922.Suche in Google Scholar

62. Singh, V., Sivaramaiah, G., Rao, J. L., Kumaran, R. S., Singh, P. K., Kim, T. S., Kim, L. K. J. Mater. Sci. Mater. Electron. 2015, 26, 5195. https://doi.org/10.1007/s10854-015-3051-y.Suche in Google Scholar

63. Murali, A., Chakradhar, R. P. S., Rao, J. L. Phys. B 2005, 364, 142. https://doi.org/10.1016/j.physb.2005.04.002.Suche in Google Scholar

64. Culea, E., Pop, L., Simon, S. Mater. Sci. Eng. B 2004, 112, 59. https://doi.org/10.1016/j.mseb.2004.06.001.Suche in Google Scholar

65. Furniss, D., Harris, E. A., Hollis, D. B. J. Phys. C: Solid State Phys. 1987, 20, L147. https://doi.org/10.1088/0022-3719/20/10/002.Suche in Google Scholar

66. Rada, S., Dan, V., Rada, M., Culea, E. J. Non-Cryst. Solids 2010, 356, 474. https://doi.org/10.1016/j.jnoncrysol.2009.12.011.Suche in Google Scholar

67. Morris, R. V. Geochim. Cosmochim. Acta 1975, 39, 621. https://doi.org/10.1016/0016-7037(75)90006-X.Suche in Google Scholar

68. Tamboli, S., Nair, G. B., Dhoble, S. J., Burghate, D. K. Phys. B 2018, 535, 232. https://doi.org/10.1016/j.physb.2017.07.042.Suche in Google Scholar

Received: 2022-06-17
Accepted: 2022-09-07
Published Online: 2023-08-18
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0289/pdf?lang=de
Button zum nach oben scrollen