Abstract
In this work, the isothermal sections of the Ni–Al–Pd and Ni–Cr–Pd ternary and the Ni–Al–Cr–Pd quaternary systems at 1423 K, with Ni fixed at 53 at.%, were experimentally determined by scanning electron microscopy, coupled with energy dispersive spectroscopy and X-ray diffraction. Three three-phase regions were confirmed and one three-phase region was deduced in the isothermal section of the Ni–Al–Pd system at 1423 K. No three-phase regions existed in the isothermal section of the Ni–Cr–Pd system at 1423 K. Three three-phase regions were determined in the 1423 K isothermal section of the Ni–Al–Cr–Pd quaternary, with Ni fixed at 53 at.%, and two four-phase regions were deduced.
Acknowledgment
We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This project (51971189) was supported by the National Natural Science Foundation of China. Project 2020JJ6097 was supported by the Zhuzhou Joint Fund of Hunan Natural Science Foundation, China.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Steinmetz, P., Alpérine, S., Josso, P., Claude, J. M. J. Phys. IV 1993, 03, 499. https://doi.org/10.1051/jp4:1993953.10.1051/jp4:1993953Search in Google Scholar
2. Lamesle, P., Steinmetz, R., Steinmetz, J. J. Electrochem. Soc. 1995, 142, 495. https://doi.org/10.1149/1.2044085.Search in Google Scholar
3. Guan, H. R., Li, M. J., Sun, X. F. Mater. Sci. Forum 2004, 461–464, 417. https://doi.org/10.4028/www.scientific.net/MSF.461-464.417.Search in Google Scholar
4. Göbel, M., Rahmel, A., Schötze, M., Schorr, M., Wu, W. T. Mater. High Temp. 2016, 12, 309. https://doi.org/10.1080/09603409.1994.11752534.Search in Google Scholar
5. Lee, B. J. Calphad 1992, 16, 121. https://doi.org/10.1016/0364-5916(92)90002-F.Search in Google Scholar
6. Gustafson, P. Calphad 1988, 12, 277. https://doi.org/10.1016/0364-5916(88)90008-9.Search in Google Scholar
7. Turchi, P. E. A., Kaufman, L., Liu, Z. K. Calphad 2006, 30, 70. https://doi.org/10.1016/j.calphad.2005.10.003.Search in Google Scholar
8. Barnard, L., Young, G. A., Swoboda, B., Choudhury, S., Van der Ven, A., Morgan, D., Tucker, J. D. Acta Mater. 2014, 81, 258. https://doi.org/10.1016/j.actamat.2014.08.017.Search in Google Scholar
9. Heinrich, F. Z. Anorg. Allg. Chem. 1913, 83, 322. https://doi.org/10.1002/zaac.19130830126.Search in Google Scholar
10. Fraenkel, W., Stern, A. Z. Anorg. Allg. Chem. 1927, 166, 164. https://doi.org/10.1002/zaac.19271660113.Search in Google Scholar
11. Nash, A., Nash, P. Bull. Alloy Phase Diagr. 1984, 5, 446. https://doi.org/10.1007/BF02872890.Search in Google Scholar
12. Okamoto, H. J. Phase Equilibria Diffus. 1993, 14, 256. https://doi.org/10.1007/BF02667823.Search in Google Scholar
13. Du, Y., Clavaguera, N. J. Alloys Compd. 1996, 237, 20. https://doi.org/10.1016/S0925-8388(96)02652-7.Search in Google Scholar
14. Ansara, I., Dupin, N., Lukas, H. L., Bo, S. J. Alloys Compd. 1997, 247, 20. https://doi.org/10.1016/0925-8388(95)02085-3.Search in Google Scholar
15. Huang, W., Chang, Y. A. Intermetallics 1998, 6, 487. https://doi.org/10.1016/S0966-9795(97)00099-X.Search in Google Scholar
16. Dupin, N., Ansara, I., Sundman, B. Calphad 2001, 25, 279. https://doi.org/10.1016/S0364-5916(01)00049-9.Search in Google Scholar
17. Lu, X. G., Sundman, B., Agren, J. Calphad 2009, 33, 450. https://doi.org/10.1016/j.calphad.2009.06.002.Search in Google Scholar
18. Wang, Y., Cacciamani, G. J. Alloys Compd. 2016, 688, 422. https://doi.org/10.1016/j.jallcom.2016.07.130.Search in Google Scholar
19. Grube, G., Knabe, R. Z. Elektrochem. 1936, 42, 793. https://doi.org/10.1002/bbpc.19360421105.Search in Google Scholar
20. Raub, E., Mahler, W. Z. Metallkd. 1954, 45, 648. https://doi.org/10.1515/ijmr-1954-541105.Search in Google Scholar
21. Raub, E., Gohle, R., Röschel, E. Z. Metallkd. 1967, 58, 567.10.1515/ijmr-1967-580814Search in Google Scholar
22. Waterstrat, R. M. J. Less Common. Met. 1981, 80, 31. https://doi.org/10.1016/0022-5088(81)90164-8.Search in Google Scholar
23. Ghosh, G., Olson, G. B. J. Phase Equil. 2000, 21, 32. https://doi.org/10.1361/105497100770340390.Search in Google Scholar
24. Grushko, B., Przepiorzynski, B., Kowalska-Strzeciwilk, E., Surowiec, M. J. Alloys Compd. 2006, 420, L1–L4. https://doi.org/10.1016/j.jallcom.2005.10.046.Search in Google Scholar
25. Wu, H., Zhang, M., Xu, B. J., Ling, G. P. J. Alloys Compd. 2014, 610, 492. https://doi.org/10.1016/j.jallcom.2014.05.022.Search in Google Scholar
26. McAlister, A. J. Bull. Alloy Phase Diagr. 1986, 7, 368. https://doi.org/10.1007/bf02873025.Search in Google Scholar
27. Yurehko, M., Fattah, A., Velikanova, T., Grushko, B. J. Alloys Compd. 2001, 329, 173. https://doi.org/10.1016/S0925-8388(01)01605-X.Search in Google Scholar
28. Li, M., Li, C. R., Wang, F. M., Zhang, W. J. Intermetallics 2006, 14, 39. https://doi.org/10.1016/j.intermet.2005.04.001.Search in Google Scholar
29. Ďuriška, L., Černičková, I., Čička, R. J Janovec: J. Phys. Conf. Ser. 2017, 809, 1. https://doi.org/10.1088/1742-6596/809/1/012008.Search in Google Scholar
30. Kitajima, Y., Hayashi, S., Narita, T. Mater. Sci. Forum 2006, 522–523, 103. https://doi.org/10.4028/www.scientific.net/MSF.522-523.103.Search in Google Scholar
31. Grushko, B., Kowalski, W., Pavlyuchkov, D., Przepiorzynski, B., Surowiec, M. J. Alloys Compd. 2008, 460, 299. https://doi.org/10.1016/j.jallcom.2007.06.044.Search in Google Scholar
32. Kowalski, W., Grushko, B., Pavlyuchkov, D., Surowiec, M. J. Alloys Compd. 2010, 496, 129. https://doi.org/10.1016/j.jallcom.2010.02.033.Search in Google Scholar
33. Zagula-Yavorska, M., Romanowska, J., Kotowski, S., Sieniawski, J. De Gruyter. 2016, 35, 37. https://doi.org/10.1515/htmp-2014-0112.Search in Google Scholar
34. Lamesle, P., Steinmetz, P. Mater. Manuf. Process. 1995, 10, 1053–1075. https://doi.org/10.1080/10426919508935088.Search in Google Scholar
35. Panteleimonov, L. A., Gubieva, D. N. Russ. Metall. 1979, 5, 186.Search in Google Scholar
36. Meininger, H., Gödecke, T., Ellner, M. Z. Metallkd. 1999, 90, 207. https://doi.org/10.1007/BF02676053.Search in Google Scholar
37. Grushko, B. J. Alloys Compd. 2013, 557, 102. https://doi.org/10.1016/j.intermet.2005.04.001.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde