Home Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
Article
Licensed
Unlicensed Requires Authentication

Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K

  • Wei Yu , Zhi Li ORCID logo EMAIL logo , Shengkun Ke , Yan Liu , Manxiu Zhao , Conglai Liao , Jingxian Hu EMAIL logo and Dupei Ma
Published/Copyright: January 25, 2023
Become an author with De Gruyter Brill

Abstract

In this work, the isothermal sections of the Ni–Al–Pd and Ni–Cr–Pd ternary and the Ni–Al–Cr–Pd quaternary systems at 1423 K, with Ni fixed at 53 at.%, were experimentally determined by scanning electron microscopy, coupled with energy dispersive spectroscopy and X-ray diffraction. Three three-phase regions were confirmed and one three-phase region was deduced in the isothermal section of the Ni–Al–Pd system at 1423 K. No three-phase regions existed in the isothermal section of the Ni–Cr–Pd system at 1423 K. Three three-phase regions were determined in the 1423 K isothermal section of the Ni–Al–Cr–Pd quaternary, with Ni fixed at 53 at.%, and two four-phase regions were deduced.


Corresponding authors: Zhi Li and Jingxian Hu, School of Materials Science and Engineering, Xiangtan University, Yuhu District, Xiangtan, P. R. China; and Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Yuhu District, Xiangtan, P. R. China, E-mail: (Z. Li), (J. Hu) (Z. Li)

Acknowledgment

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This project (51971189) was supported by the National Natural Science Foundation of China. Project 2020JJ6097 was supported by the Zhuzhou Joint Fund of Hunan Natural Science Foundation, China.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Steinmetz, P., Alpérine, S., Josso, P., Claude, J. M. J. Phys. IV 1993, 03, 499. https://doi.org/10.1051/jp4:1993953.10.1051/jp4:1993953Search in Google Scholar

2. Lamesle, P., Steinmetz, R., Steinmetz, J. J. Electrochem. Soc. 1995, 142, 495. https://doi.org/10.1149/1.2044085.Search in Google Scholar

3. Guan, H. R., Li, M. J., Sun, X. F. Mater. Sci. Forum 2004, 461–464, 417. https://doi.org/10.4028/www.scientific.net/MSF.461-464.417.Search in Google Scholar

4. Göbel, M., Rahmel, A., Schötze, M., Schorr, M., Wu, W. T. Mater. High Temp. 2016, 12, 309. https://doi.org/10.1080/09603409.1994.11752534.Search in Google Scholar

5. Lee, B. J. Calphad 1992, 16, 121. https://doi.org/10.1016/0364-5916(92)90002-F.Search in Google Scholar

6. Gustafson, P. Calphad 1988, 12, 277. https://doi.org/10.1016/0364-5916(88)90008-9.Search in Google Scholar

7. Turchi, P. E. A., Kaufman, L., Liu, Z. K. Calphad 2006, 30, 70. https://doi.org/10.1016/j.calphad.2005.10.003.Search in Google Scholar

8. Barnard, L., Young, G. A., Swoboda, B., Choudhury, S., Van der Ven, A., Morgan, D., Tucker, J. D. Acta Mater. 2014, 81, 258. https://doi.org/10.1016/j.actamat.2014.08.017.Search in Google Scholar

9. Heinrich, F. Z. Anorg. Allg. Chem. 1913, 83, 322. https://doi.org/10.1002/zaac.19130830126.Search in Google Scholar

10. Fraenkel, W., Stern, A. Z. Anorg. Allg. Chem. 1927, 166, 164. https://doi.org/10.1002/zaac.19271660113.Search in Google Scholar

11. Nash, A., Nash, P. Bull. Alloy Phase Diagr. 1984, 5, 446. https://doi.org/10.1007/BF02872890.Search in Google Scholar

12. Okamoto, H. J. Phase Equilibria Diffus. 1993, 14, 256. https://doi.org/10.1007/BF02667823.Search in Google Scholar

13. Du, Y., Clavaguera, N. J. Alloys Compd. 1996, 237, 20. https://doi.org/10.1016/S0925-8388(96)02652-7.Search in Google Scholar

14. Ansara, I., Dupin, N., Lukas, H. L., Bo, S. J. Alloys Compd. 1997, 247, 20. https://doi.org/10.1016/0925-8388(95)02085-3.Search in Google Scholar

15. Huang, W., Chang, Y. A. Intermetallics 1998, 6, 487. https://doi.org/10.1016/S0966-9795(97)00099-X.Search in Google Scholar

16. Dupin, N., Ansara, I., Sundman, B. Calphad 2001, 25, 279. https://doi.org/10.1016/S0364-5916(01)00049-9.Search in Google Scholar

17. Lu, X. G., Sundman, B., Agren, J. Calphad 2009, 33, 450. https://doi.org/10.1016/j.calphad.2009.06.002.Search in Google Scholar

18. Wang, Y., Cacciamani, G. J. Alloys Compd. 2016, 688, 422. https://doi.org/10.1016/j.jallcom.2016.07.130.Search in Google Scholar

19. Grube, G., Knabe, R. Z. Elektrochem. 1936, 42, 793. https://doi.org/10.1002/bbpc.19360421105.Search in Google Scholar

20. Raub, E., Mahler, W. Z. Metallkd. 1954, 45, 648. https://doi.org/10.1515/ijmr-1954-541105.Search in Google Scholar

21. Raub, E., Gohle, R., Röschel, E. Z. Metallkd. 1967, 58, 567.10.1515/ijmr-1967-580814Search in Google Scholar

22. Waterstrat, R. M. J. Less Common. Met. 1981, 80, 31. https://doi.org/10.1016/0022-5088(81)90164-8.Search in Google Scholar

23. Ghosh, G., Olson, G. B. J. Phase Equil. 2000, 21, 32. https://doi.org/10.1361/105497100770340390.Search in Google Scholar

24. Grushko, B., Przepiorzynski, B., Kowalska-Strzeciwilk, E., Surowiec, M. J. Alloys Compd. 2006, 420, L1–L4. https://doi.org/10.1016/j.jallcom.2005.10.046.Search in Google Scholar

25. Wu, H., Zhang, M., Xu, B. J., Ling, G. P. J. Alloys Compd. 2014, 610, 492. https://doi.org/10.1016/j.jallcom.2014.05.022.Search in Google Scholar

26. McAlister, A. J. Bull. Alloy Phase Diagr. 1986, 7, 368. https://doi.org/10.1007/bf02873025.Search in Google Scholar

27. Yurehko, M., Fattah, A., Velikanova, T., Grushko, B. J. Alloys Compd. 2001, 329, 173. https://doi.org/10.1016/S0925-8388(01)01605-X.Search in Google Scholar

28. Li, M., Li, C. R., Wang, F. M., Zhang, W. J. Intermetallics 2006, 14, 39. https://doi.org/10.1016/j.intermet.2005.04.001.Search in Google Scholar

29. Ďuriška, L., Černičková, I., Čička, R. J Janovec: J. Phys. Conf. Ser. 2017, 809, 1. https://doi.org/10.1088/1742-6596/809/1/012008.Search in Google Scholar

30. Kitajima, Y., Hayashi, S., Narita, T. Mater. Sci. Forum 2006, 522–523, 103. https://doi.org/10.4028/www.scientific.net/MSF.522-523.103.Search in Google Scholar

31. Grushko, B., Kowalski, W., Pavlyuchkov, D., Przepiorzynski, B., Surowiec, M. J. Alloys Compd. 2008, 460, 299. https://doi.org/10.1016/j.jallcom.2007.06.044.Search in Google Scholar

32. Kowalski, W., Grushko, B., Pavlyuchkov, D., Surowiec, M. J. Alloys Compd. 2010, 496, 129. https://doi.org/10.1016/j.jallcom.2010.02.033.Search in Google Scholar

33. Zagula-Yavorska, M., Romanowska, J., Kotowski, S., Sieniawski, J. De Gruyter. 2016, 35, 37. https://doi.org/10.1515/htmp-2014-0112.Search in Google Scholar

34. Lamesle, P., Steinmetz, P. Mater. Manuf. Process. 1995, 10, 1053–1075. https://doi.org/10.1080/10426919508935088.Search in Google Scholar

35. Panteleimonov, L. A., Gubieva, D. N. Russ. Metall. 1979, 5, 186.Search in Google Scholar

36. Meininger, H., Gödecke, T., Ellner, M. Z. Metallkd. 1999, 90, 207. https://doi.org/10.1007/BF02676053.Search in Google Scholar

37. Grushko, B. J. Alloys Compd. 2013, 557, 102. https://doi.org/10.1016/j.intermet.2005.04.001.Search in Google Scholar

Received: 2022-05-28
Accepted: 2022-10-04
Published Online: 2023-01-25
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0248/pdf
Scroll to top button