Startseite Factors dictating the extent of low elongation in high sulfur-containing bainitic steels
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Factors dictating the extent of low elongation in high sulfur-containing bainitic steels

  • Baoqi Dong , Tingping Hou EMAIL logo , Peter Hodgson , Oleg Isayev , Oleksandr Hress , Serhii Yershov und Kaiming Wu EMAIL logo
Veröffentlicht/Copyright: 17. November 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The elongation of two low temperature bainitic steels with different sulfur contents was compared under the same heat treatment. Elongations of 1.0 ± 0.5 % and 11.4 ± 1.5 % were achieved for the high- and low-S steels, respectively. A high carbon concentration and fine grain size leading to over stability of the retained austenite in the high-S steel is the main reason for the poor elongation. The differences in carbon concentration and grain size between the two steels can be attributed to pinning by MnS, where the existence of a large number of long slivers of MnS in the high-S steel was responsible for the pinning. The stability of retained austenite was also analyzed by the local tensile elongation and hardness, and the volume fraction of retained austenite that transformed to martensite during the tensile process.


Corresponding authors: Tingping Hou and Kaiming Wu, The State Key Laboratory for Refractories and Metallurgy, Hubei Collaborative Innovation Center on Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, 947 Heping Avenue, 430081 Wuhan, P.R. China, E-mail: (T. Hou), (K. Wu)

  1. Research ethics: Not applicable.

  2. Author contributions: Conceptualization: Tingping Hou and Kaiming Wu; formal analysis: Oleg Isayev, Oleksandr Hress and Serhii Yershov; investigation: Baoqi Dong and Tingping Hou; resources: Kaiming Wu; data curation: Baoqi Dong; writing-original fraft preparation: Baoqi Dong; writing-review and editing: Peter Hodgson, Tingping Hou and Kaiming Wu; Supervision: Kaiming Wu

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. U20A20279, 51671149), the Key research and development program of Hubei Province (Grant No. 2021BAA057) and the 111 project.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Garcia-Mateo, C., Peet, M., Caballero, F. G., Bhadeshia, H. K. D. H. Mater. Sci. Technol. 2013, 20, 814. https://doi.org/10.1179/026708304225017355.Suche in Google Scholar

2. Garcia-Mateo, C., Caballero, F. G., Bhadeshia, H. K. D. H. ISIJ Int. 2007, 43, 1821. https://doi.org/10.2355/isijinternational.43.1821.Suche in Google Scholar

3. Caballero, F. G., Bhadeshia, H. K. D. H., Mawella, K. J. A., Jones, D. G., Brown, P. Mater. Sci. Technol. 2002, 18, 279. https://doi.org/10.1179/026708301225000725.Suche in Google Scholar

4. Garcia-Mateo, C., Caballero, F. G., Bhadeshia, H. K. D. H. J. Phys. IV 2003, 112, 285. https://doi.org/10.1051/jp4:2003884.10.1051/jp4:2003884Suche in Google Scholar

5. Garcia-Mateo, C., Caballero, F. G., Chao, J., Capdevila, C., Andres, C. G. D. J. Mater. Sci. 2009, 44, 4617. https://doi.org/10.1007/s10853-009-3704-4.Suche in Google Scholar

6. Garcia-Mateo, C., Caballero, F. G. Mater. Trans. 2005, 46, 1839. https://doi.org/10.2320/matertrans.46.1839.Suche in Google Scholar

7. Luo, P., Gao, G., Zhang, H., Tan, Z., Misra, R. D. K. Mater. Sci. Eng. A 2016, 661, 1. https://doi.org/10.1016/j.msea.2016.03.006.Suche in Google Scholar

8. De-Cooman, B. C. Curr. Opin. Solid State Mater. 2004, 8, 285–303. https://doi.org/10.1016/j.cossms.2004.10.002.Suche in Google Scholar

9. Choi, K. S., Soulami, A., Liu, W. N., Sun, X., Khaleel, M. A. ISIJ Int. 1992, 32, 1311. https://doi.org/10.2355/isijinternational.32.1311.Suche in Google Scholar

10. Garcia-Mateo, C., Paul, G., Somani, M., Porter, D., Bracke, L. Metals 2017, 7, 159. https://doi.org/10.3390/met7050159.Suche in Google Scholar

11. Hu, F., Wu, K. M., Hou, T. P., Peter, H., Rodionova, I. Metallurgist 2017, 60, 1295. https://doi.org/10.1007/s11015-017-0444-6.Suche in Google Scholar

12. Caballero, F. G., Bhadeshia, H. K. D. H., Mawella, K. J. A., Jones, D. G., Brown, P. Mater. Sci. Technol. 2013, 17, 517. https://doi.org/10.1179/026708301101510357.Suche in Google Scholar

13. Bhadeshia, H. K. D. H., Edmonds, D. V. Met. Sci. 2013, 17, 420. https://doi.org/10.1179/030634583790420646.Suche in Google Scholar

14. Jimenez-Melero, E., Diijk, N. H. V., Zhao, L., Sietsma, J., Offerman, S. E., Wright, J. P., Zwaag, S. V. Acta Mater. 2007, 55, 6713. https://doi.org/10.1016/j.actamat.2007.08.040.Suche in Google Scholar

15. Lee, S., Lee, S. J., De-Cooman, B. C. Scr. Mater. 2011, 65, 225. https://doi.org/10.1016/j.scriptamat.2011.04.010.Suche in Google Scholar

16. Matsuoka, Y., Iwasaki, T., Nakada, N., Tsuchiyama, T., Takaki, S. ISIJ Int. 2013, 53, 1224. https://doi.org/10.2355/isijinternational.53.1224.Suche in Google Scholar

17. Wang, J., Zwaag, S. V. D. Metall. Mater. Trans. A 2001, 32, 1527. https://doi.org/10.1007/s11661-001-0240-5.Suche in Google Scholar

18. Dong, B. Q., Hou, T. P., Zhou, W., Zhang, G. H., Wu, K. M. Metals 2018, 8, 931. https://doi.org/10.3390/met8110931.Suche in Google Scholar

19. Lindström, A. Austempered High Silicon Steel: Investigation of Wear Resistance in a Carbide Free Microstructure. MSc thesis, Lulea University of Technology, Sweden, 2006.Suche in Google Scholar

20. Bhadeshia, H. K. D. H., Edmonds, D. V. Acta Mater. 1980, 28, 1265. https://doi.org/10.1016/0001-6160(80)90082-6.Suche in Google Scholar

21. Pinard, P. T., Schwedt, A., Ramazani, A., Prahl, U., Richter, S. Microsc. Microanal. 2013, 19, 996. https://doi.org/10.1017/S1431927613001554.Suche in Google Scholar PubMed

22. Hasan, H., Peet, M. J., Avettand-Fènoë, M. N., Bhadeshia, H. K. D. H. Mater. Sci. Eng. A 2014, 615, 340. https://doi.org/10.1016/j.msea.2014.07.097.Suche in Google Scholar

23. Zare, A., Ekrami, A. Mater. Sci. Eng. A 2011, 530, 440. https://doi.org/10.1016/j.msea.2011.09.108.Suche in Google Scholar

24. Bruce, T., Long, H., Slatter, T., Dwyer-Joyce, R. Wind Energy 2016, 19, 1903. https://doi.org/10.1002/we.1958.Suche in Google Scholar

25. Stephenson, K. J., Was, G. S. J. Nucl. Mater. 2016, 481, 214. https://doi.org/10.1016/j.jnucmat.2016.09.001.Suche in Google Scholar

26. Xiong, X. C., Chen, B., Huang, M. X., Wang, J. Scr. Mater. 2013, 68, 321. https://doi.org/10.1016/j.scriptamat.2012.11.003.Suche in Google Scholar

27. Mahieu, J., Maki, J., De-Cooman, B. C., Claessens, S. Metall. Mater. Trans. A 2002, 33, 2573. https://doi.org/10.1007/s11661-002-0378-9.Suche in Google Scholar

28. Biswas, D. K., Venkatraman, M., Narendranath, C. S., Chatterjee, U. K. Metall. Trans. A 1992, 23, 1479. https://doi.org/10.1007/BF02647331.Suche in Google Scholar

29. Chang, K., Feng, W. M., Chen, L. Q. Acta Mater. 2009, 57, 5229. https://doi.org/10.1016/j.actamat.2009.07.025.Suche in Google Scholar

30. Guo, L., Roelofs, H., Lembke, M. I., Bhadeshia, H. K. D. H. Mater. Sci. Technol. 2016, 10, 1. https://doi.org/10.1080/02670836.2016.1258157.Suche in Google Scholar

31. Matsuzaki, A., Bhadeshia, H. K. D. H. Mater. Sci. Technol. 1999, 15, 518. https://doi.org/10.1179/026708399101506210.Suche in Google Scholar

32. Lan, L. Y., Qiu, C. L., Zhao, D. W., Gao, X. H., Du, L. X. Mater. Sci. Technol. 2011, 27, 1657. https://doi.org/10.1179/1743284710Y.0000000026.Suche in Google Scholar

Received: 2022-02-14
Accepted: 2023-03-15
Published Online: 2023-11-17
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0078/pdf
Button zum nach oben scrollen