Startseite Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C

  • Xinyue Fan , Yang Han , Jiarui Yu , Changwei Li , Zhongqiu Cao EMAIL logo , Ke Zhang , Yan Wang und Shigang Xin
Veröffentlicht/Copyright: 5. Januar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Bulk three-phase nanocrystalline (NC) Ag-20Cu-30Cr alloy was obtained by hot-pressing mechanically alloyed powders, and oxidation tests were completed in 0.1 MPa pure O2 at 700 and 800 °C. The oxidation behaviour of the alloy and the effect of the grain size were also studied in comparison with the previous coarse-grained (CG) Ag-20Cu-30Cr alloy prepared by a powder metallurgy route. At the two temperatures the oxidation kinetic curves of the NC Ag-20Cu-30Cr alloy are composed of three parabolic stages, and their parabolic rate constants become smaller as the oxidation time increases. The oxidation rate at 700 °C is higher before 5 h, but lower after 5 h than that at 800 °C. Furthermore, the oxidation rate of the NC Ag-20Cu-30Cr alloy is lower than that of the CG Ag-20Cu-30Cr alloy at the same temperature. Moreover, the NC Ag-20Cu-30Cr alloy forms an outer oxide layer composed of the Cu oxides and double oxides of the metallic Ag, Cu and Cr as well as an inner regular, continuous and protective chromia layer. Thus, the Ag-20Cu-30Cr alloy can complete the transition from an internal to external oxidation of the reactive component Cr, and in the end form a regular, continuous and protective chromia layer after nanocrystallization.


Corresponding author: Zhongqiu Cao, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Authors are very grateful for the financial supports from the National Natural Science Foundation of China (51271127), and the Liaoning Provincial Key Research and Development Program of China (2018304025).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gleiter, H. Prog. Mater. Sci. 1989, 33, 223. https://doi.org/10.1016/0079-6425(89)90001-7.Suche in Google Scholar

2. Liang, T., Chen, Z., Yang, X. Q., Zhang, J. Y., Zhang, P. Int. J. Mater. Res. 2017, 108, 435. https://doi.org/10.3139/146.111496.Suche in Google Scholar

3. Koch, C. C. J. Mater. Sci. 2007, 42, 1403. https://doi.org/10.1007/s10853-006-0609-3.Suche in Google Scholar

4. Fang, T. H., Li, W., Tao, N. R., Lu, K. Science 2011, 331, 1587. https://doi.org/10.1126/science.1200177.Suche in Google Scholar PubMed

5. Hahn, E. N., Meyers, M. A. Mater. Sci. Eng. A 2015, 646, 101. https://doi.org/10.1016/j.msea.2015.07.075.Suche in Google Scholar

6. Wang, S. G., Sun, M., Han, H. B., Long, K., Zhang, Z. D. Corrosion Sci. 2013, 72, 64. https://doi.org/10.1016/j.corsci.2013.03.008.Suche in Google Scholar

7. Yang, L. L., Wang, J. L., Yang, R. Z., Yang, S. S., Wang, F. H. Corrosion Sci. 2021, 180, 109182. https://doi.org/10.1016/j.corsci.2020.109182.Suche in Google Scholar

8. Wang, J. L., Chen, M. H., Yang, L. L., Zhu, S. L., Wang, F. H. Corrosion Sci. 2015, 98, 530. https://doi.org/10.1016/j.corsci.2015.05.062.Suche in Google Scholar

9. Bak, S. H., Lee, D. B. Oxid. Met. 2015, 84, 345. https://doi.org/10.1007/s11085-015-9558-z.Suche in Google Scholar

10. Lu, Y. H., Zhang, M. L., Tang, W. B., Song, Y. Y., Rong, L. J. Oxid. Met. 2019, 91, 495. https://doi.org/10.1007/s11085-019-09895-0.Suche in Google Scholar

11. Niu, Y., Song, J. X., Gesmundo, F., Farne, G. Oxid. Met. 2001, 55, 291. https://doi.org/10.1023/A:1010312227843.Suche in Google Scholar

12. Fu, G. Y., Niu, Y., Gesmundo, F. Corrosion Sci. 2003, 45, 559. https://doi.org/10.1016/S0010-938X(02)00141-5.Suche in Google Scholar

13. Han, Z., Lu, L., Zhang, H. W., Yang, Z. Q., Wang, F. H., Lu, K. Oxid. Met. 2005, 63, 261. https://doi.org/10.1007/s11085-005-4381-6.Suche in Google Scholar

14. Zhou, Y., Peng, X., Wang, F. H. Scripta Mater. 2004, 50, 1429. https://doi.org/10.1016/j.scriptamat.2004.03.014.Suche in Google Scholar

15. Niu, Y., Gesmundo, F., Farne, G., Li, Y. S., Matteazzi, P., Randi, G. Corrosion Sci. 2000, 42, 1763. https://doi.org/10.1016/s0010-938x(00)00035-4.Suche in Google Scholar

16. Rahman, A., Chawla, V., Jayaganthan, R., Chandra, R., Ambardar, R. Oxid. Met. 2010, 74, 341. https://doi.org/10.1007/s11085-010-9217-3.Suche in Google Scholar

17. Cao, Z. Q., Sun, H. J., Lu, J., Zhang, K., Sun, Y. Corrosion Sci. 2014, 80, 184. https://doi.org/10.1016/j.corsci.2013.11.025.Suche in Google Scholar

18. Chen, S. H., Jin, X. J., Rong, L. J. Oxid. Met. 2016, 85, 189. https://doi.org/10.1007/s11085-015-9596-6.Suche in Google Scholar

19. Cao, Z. Q., Li, C. W., Jia, Z. Q., Wang, Y. Corrosion Sci. 2016, 110, 167. https://doi.org/10.1016/j.corsci.2016.04.024.Suche in Google Scholar

20. Han, Y., Yu, J. R., Fan, X. Y., Li, C. W., Cao, Z. Q., Wang, Y., Zhang, K., Xin, S. G. J. Mater. Eng. Perform. 2021, 30, 9209. https://doi.org/10.1007/s11665-021-06119-y.Suche in Google Scholar

21. Wagner, C. Z. Elektrochem. 1959, 63, 772. https://doi.org/10.1002/bbpc.19590630713.Suche in Google Scholar

22. Gesmundo, F., Viani, F., Niu, Y. Oxid. Met. 1996, 45, 51. https://doi.org/10.1007/BF01046820.Suche in Google Scholar

23. Gesmundo, F., Niu, Y. Oxid. Met. 2003, 60, 347. https://doi.org/10.1023/A:1027398104508.Suche in Google Scholar

24. Niu, Y., Gesmundo, F. Oxid. Met. 2003, 60, 371. https://doi.org/10.1023/A:1027379521347.Suche in Google Scholar

25. Guo, Q. Q., Liu, S., Wu, X. F., Liu, L. L., Niu, Y. Corrosion Sci. 2015, 100, 579. https://doi.org/10.1016/j.corsci.2015.08.034.Suche in Google Scholar

26. Hart, E. W. Acta Mater. 1957, 5, 597. https://doi.org/10.1016/0001-6160(57)90127-X.Suche in Google Scholar

27. Wang, F. H. Oxid. Met. 1997, 48, 215. https://doi.org/10.1007/bf01670500.Suche in Google Scholar

28. Birringer, R. Mater. Sci. Eng. A 1989, 117, 33. https://doi.org/10.1016/0921-5093(89)90083-X.Suche in Google Scholar

29. Wang, C. L., Lin, S. Z., Niu, Y., Wu, W. T., Zhao, Z. L. Appl. Phys. 2003, 76, 157. https://doi.org/10.1007/s003390201402.Suche in Google Scholar

30. Wang, F., Lou, H. Y., Zhu, S. L., Wu, W. T. Oxid. Met. 1996, 45, 39. https://doi.org/10.1007/BF01046819.Suche in Google Scholar

31. Geng, S. J., Wang, F. H., Zhu, S. L. Oxid. Met. 2002, 57, 231. https://doi.org/10.1023/A:1014870101143.Suche in Google Scholar

Received: 2021-10-11
Accepted: 2022-03-31
Published Online: 2023-01-05
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8599/pdf
Button zum nach oben scrollen