Startseite Machine learning doped MgB2 superconductor critical temperature from topological indices
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Machine learning doped MgB2 superconductor critical temperature from topological indices

  • Yun Zhang ORCID logo EMAIL logo und Xiaojie Xu
Veröffentlicht/Copyright: 26. Mai 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Due to the absence of weak-links in grain boundaries, less anisotropy, and high availabilities at reasonable cost, magnesium boride, MgB2, has been studied extensively in the past decade. It has relatively high critical temperature, which is correlated to crystallographic and electronic structures. Two topological indices, the electric connectivity index and valence energy level connectivity, are characteristics of compound branching. We develop the Gaussian process regression (GPR) model to shed light on the relationship between topological descriptors and superconducting transition temperature for doped MgB2 superconductors. The model is highly accurate and stable, which contributes to fast predictions of superconducting transition temperature.


Corresponding author: Yun Zhang, North Carolina State University, Raleigh, NC 27695, USA, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflict of interest.

  4. Data availability statement: Data used are available in the paper.

References

1. Schwartz, J., Effio, T., Liu, X., Le, Q. V., Mbaruku, A. L., Schneider-Muntau, H. J., Shen, T., Song, H., Trociewitz, U. P., Wang, X., Weijers, H. W. High field superconducting solenoids via high temperature superconductors. IEEE Trans. Appl. Supercond. 2008, 18, 70–81. https://doi.org/10.1109/TASC.2008.921363.Suche in Google Scholar

2. Zhang, Y., Koch, C. C., Schwartz, J. Formation of Bi2Sr2CaCu2O x/Ag multifilamentary metallic precursor powder-in-tube wires. Supercond. Sci. Technol. 2016, 29, 125005. https://doi.org/10.1088/0953-2048/29/12/125005.Suche in Google Scholar

3. Shen, T., Bosque, E., Davis, D., Jiang, J., White, M., Zhang, K., Higley, H., Turqueti, M., Huang, Y., Miao, H., Trociewitz, U. Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm2. Sci. Rep. 2019, 9, 1–9. https://doi.org/10.1038/s41598-019-46629-3.Suche in Google Scholar PubMed PubMed Central

4. Song, H., Hunte, F., Schwartz, J. On the role of pre-existing defects and magnetic flux avalanches in the degradation of YBa2Cu3O7−x coated conductors by quenching. Acta Mater. 2012, 60, 6991–7000. https://doi.org/10.1016/j.actamat.2012.09.003.Suche in Google Scholar

5. Thieme, C. L. H., Gagnon, K. J., Coulter, J. Y., Song, H., Schwartz, J. Stability of second generation HTS pancake coils at 4.2 K for high heat flux applications. IEEE Trans. Appl. Supercond. 2009, 19, 1626–1632. https://doi.org/10.1109/TASC.2009.2017914.Suche in Google Scholar

6. Buzea, C., Yamashita, T. Review of the superconducting properties of MgB2. Supercond. Sci. Technol. 2001, 14, R115. https://doi.org/10.1088/0953-2048/14/11/201.Suche in Google Scholar

7. Cai, C. Z., Wang, G. L., Wen, Y. F., Pei, J. F., Zhu, X. J., Zhuang, W. P. Superconducting transition temperature Tc estimation for superconductors of the doped MgB2 system using topological index via support vector regression. J. Supercond. Nov. Magnetism 2010, 23, 745–748. https://doi.org/10.1007/s10948-010-0727-7.Suche in Google Scholar

8. Zhang, Y., Xu, X. Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids. New J. Chem. 2020, 44, 20544–20567. https://doi.org/10.1039/d0nj03868g.Suche in Google Scholar

9. Zhang, Y., Xu, X. Predictions of the total crack length in solidification cracking through LSBoost. Metall. Mater. Trans. 2021, 52, 985–1005. https://doi.org/10.1007/s11661-020-06130-3.Suche in Google Scholar

10. Zhang, Y., Xu, X. Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression. Comput. Mater. Sci. 2020, 179, 109583. https://doi.org/10.1016/j.commatsci.2020.109583.Suche in Google Scholar

11. Zhang, Y., Xu, X. Predicting doped MgB2 superconductor critical temperature from lattice parameters using Gaussian process regression. Phys. C: Supercond. Appl. 2020, 573, 1353633. https://doi.org/10.1016/j.physc.2020.1353633.Suche in Google Scholar

12. Zhang, Y., Xu, X. Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression. J. Magn. Magn Mater. 2020, 512, 166998. https://doi.org/10.1016/j.jmmm.2020.166998.Suche in Google Scholar

13. Zhang, Y., Xu, X. Relative cooling power modeling of lanthanum manganites using Gaussian process regression. RSC Adv. 2020, 10, 20646–20653. https://doi.org/10.1039/D0RA03031G.Suche in Google Scholar PubMed PubMed Central

14. Zhang, Y., Xu, X. Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omega 2020, 5, 15344–15352. https://doi.org/10.1021/acsomega.0c01438.Suche in Google Scholar PubMed PubMed Central

15. Zhang, Y., Xu, X. Machine learning lattice constants for cubic perovskite A22+BB′O6${A}_{2}^{2+}B{B}^{\prime }{O}_{6}$ compounds. CrystEngComm 2020, 22, 6385–6397. https://doi.org/10.1039/D0CE00928H.Suche in Google Scholar

16. Zhang, Y., Xu, X. Machine learning lattice parameters of monoclinic double perovskites. Int. J. Quant. Chem. 2021, 121, e26480. https://doi.org/10.1002/qua.26480.Suche in Google Scholar

17. Zhang, Y., Xu, X. Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning. Int. J. Mater. Res. 2021, 112, 2–9. https://doi.org/10.1515/ijmr-2020-7986.Suche in Google Scholar

18. Zhang, T., Sun, A. M., Zhu, H. B., Wang, S. Q., Huang, G. H., Li, Y. W., Chen, T. J. The study on the relationship between the superconductivity of doping MgB2 system and topological index. Chin. J. Low Temp. Phys. 2007, 29, 307. https://doi.org/10.3969/j.issn.1000-3258.2007.04.012.Suche in Google Scholar

19. Feng, C. J. Electric index, electric connectivity index and its applications. Chin. J. Inorg. Chem. 1999, 15, 835–839.Suche in Google Scholar

20. Randic, M. Characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. https://doi.org/10.1021/ja00856a001.Suche in Google Scholar

21. Olatunji, S. O., Owolabi, T. O. Modeling superconducting transition temperature of doped MgB2 superconductor from structural distortion and ambient temperature resistivity measurement using hybrid intelligent approach. Comput. Mater. Sci. 2021, 192, 110392. https://doi.org/10.1016/j.commatsci.2021.110392.Suche in Google Scholar

22. Olatunji, S. O., Owolabi, T. O. Barium titanate semiconductor band gap characterization through gravitationally optimized support vector regression and extreme learning machine computational methods. Math. Probl Eng. 2021, 2021, 9978384. https://doi.org/10.1155/2021/9978384.Suche in Google Scholar

23. Akinpelu, A. A., Ali, M. E., Owolabi, T. O., Johan, M. R., Saidur, R., Olatunji, S. O., Chowdbury, Z. A support vector regression model for the prediction of total polyaromatic hydrocarbons in soil: an artificial intelligent system for mapping environmental pollution. Neural Comput. Appl. 2020, 32, 14899–14908. https://doi.org/10.1007/s00521-020-04845-3.Suche in Google Scholar

24. Adeyemo, H. B., Owolabi, T. O., Suleiman, M. A., Akande, K. O., Alhiyafi, J., Fayose, S., Olatunji, S. O. Hybrid chemometric approach for estimating the heat of detonation of aromatic energetic compounds. Heliyon 2019, 5, e02035. https://doi.org/10.1016/j.heliyon.2019.e02035.Suche in Google Scholar PubMed PubMed Central

25. Owolabi, T. O., Akande, K. O., Olatunji, S. O., Aldhafferi, N., Alqahtani, A. Ensemble-based support vector regression with gravitational search algorithm optimization for estimating magnetic relative cooling power of manganite refrigerant in magnetic refrigeration application. J. Supercond. Nov. Magnetism 2019, 32, 2107–2118. https://doi.org/10.1007/s10948-018-4930-2.Suche in Google Scholar

26. Owolabi, T. O., Akande, K. O., Olatunji, S. O., Aldhafferi, N., Alqahtani, A. Support vector regression ensemble for effective modeling of magnetic ordering temperature of doped manganite in magnetic refrigeration. J. Low Temp. Phys. 2019, 195, 179–201. https://doi.org/10.1007/s10909-019-02153-2.Suche in Google Scholar

27. Bull, A. D. Convergence rates of efficient global optimization algorithms. J. Mach. Learn. Res. 2011, 12, 2879–2904.Suche in Google Scholar

28. Gelbart, M. A., Snoek, J., Adams, R. P. Bayesian optimization with unknown constraints, 2014. arXiv preprint arXiv:1403.5607.Suche in Google Scholar

29. Snoek, J., Larochelle, H., Adams, R. P. Practical bayesian optimization of machine learning algorithms, 2012. arXiv preprint arXiv:1206.2944.Suche in Google Scholar

Received: 2021-09-12
Accepted: 2022-02-04
Published Online: 2022-05-26
Published in Print: 2022-07-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8557/html
Button zum nach oben scrollen