Home Study on the microstructure and age hardening capability in Al–Cu–Li alloys with different Cu/Li ratio
Article
Licensed
Unlicensed Requires Authentication

Study on the microstructure and age hardening capability in Al–Cu–Li alloys with different Cu/Li ratio

  • Juan Ma ORCID logo EMAIL logo , Xiaochun Liu , Desheng Yan and Lijian Rong
Published/Copyright: June 21, 2022
Become an author with De Gruyter Brill

Abstract

The microstructural evolution during natural ageing and artificial ageing treatment has been quantified in Al–Cu–Li alloys with Cu/Li ratios of 2.3 and 3.9. Methods including various ageing, hardness testing, transmission electron microscopy and differential scanning calorimetry were employed. The precipitation of T1 (Al2CuLi) phase was confirmed for the first time in the high Li content alloy under natural ageing treatment for 5 months, while the Li-lean alloy exhibits barely any precipitation at room temperature. Under artificial ageing, the Li-rich alloy exhibits a significant increase in hardness due to the formation of high density spherical δ′ phase. On the other hand, the increasing Cu/Li ratio promotes the precipitation of the Cu containing precipitates T1 and θ (Al2Cu), the high Cu/Li ratio (3.9) alloy shows a recovery of ductility, with a uniform elongation of ∼20 %, which is caused by the strong interactions between the dislocations and the nano-scale T1 and θ precipitates. Meanwhile, as the main strengthening precipitate changes from θ and T1 to T1 alone with prolonged ageing time, the alloy displays a double-peak age hardening behavior. This work sheds light on the design of high strength and ductile Al–Li alloys through the well-controlled T1 phase precipitation.


Corresponding author: Juan Ma, Chengdu University, 2025 Chengluo Road, Sichuan, Chengdu 610106, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rioja, R. J., Liu, J. The evolution of Al–Li base products for aerospace and space applications. Metall. Mater. Trans. 2012, 43, 3325–3337; https://doi.org/10.1007/s11661-012-1155-z.Search in Google Scholar

2. Eswara Prasad, N., Gokhale, A. A., Wanhill, R. J. H. Aluminium-Lithium Alloys; Elsevier: Oxford, 2014.Search in Google Scholar

3. Wu, L., Li, X. F., Han, G. Y., Deng, Y. Q., Ma, N. H., Wang, H. W. Precipitation behavior of the high-Li-content in-situ TiB2/Al–Li–Cu composite. Mater. Char 2017, 132, 215–222; https://doi.org/10.1016/j.matchar.2017.08.015.Search in Google Scholar

4. Li, J. F., Liu, P. L., Chen, Y. L., Zhang, X. H., Zheng, Z. Q. Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys. Trans. Nonferrous Met. Soc. China 2015, 25, 2103–2112; https://doi.org/10.1016/S1003-6326(15)63821-3.Search in Google Scholar

5. Pan, Z. R., Zheng, Z. Q., Liao, Z. Q., Li, S. C. New cubic precipitate in Al–3.5Cu–1.0Li–0.5In (wt.%) alloy. Mater. Lett. 2010, 64, 942–944; https://doi.org/10.1016/j.matlet.2010.01.066.Search in Google Scholar

6. Gable, B., Zhu, A., Csontos, A., Starke, E.Jr. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al–Li–Cu–X alloy. J. Light Met. 2001, 1, 1–14; https://doi.org/10.1016/s1471-5317(00)00002-x.Search in Google Scholar

7. Decreus, B., Deschamps, A., De Geuser, F., Donnadieu, P., Sigli, C., Weyland, M. The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys. Acta Mater. 2013, 61, 2207–2218; https://doi.org/10.1016/j.actamat.2012.12.041.Search in Google Scholar

8. Blankenship, C., Starke, E. Structure-property relationships in Al–Li–Cu–Mg–Ag–Zr alloy X2095. Acta Metall. Mater. 1994, 42, 845–855; https://doi.org/10.1016/0956-7151(94)90279-8.Search in Google Scholar

9. Donnadieu, P., Shao, Y., De Geuser, F., Botton, G., Lazar, S., Cheynet, M., De Boissieu, M., Deschamps, A. Atomic structure of T1 precipitates in Al Li Cu alloys revisited with HAADF-STEM imageing and small-angle X-ray scattering. Acta Mater. 2011, 59, 462–472; https://doi.org/10.1016/J.ACTAMAT.2010.09.044.Search in Google Scholar

10. Herring, R. A., Gayle, F. W., Pickens, J. R. High-resolution electron microscopy study of a high-copper variant of weldalite 049 and a high-strength AI–Cu–Ag–Mg–Zr alloy. J. Mater. Sci. 1993, 28, 69–73; https://doi.org/10.1007/BF00349035.Search in Google Scholar

11. Dorin, T., De Geuser, F., Williams, L., Sigli, C., Deschamps, A. Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al–Cu–Li alloy. Mater. Sci. Eng. A 2014, 605, 119–126; https://doi.org/10.1016/j.msea.2014.03.024.Search in Google Scholar

12. Vaithyanathan, V., Wolverton, C., Chen, L. Multiscale modeling of θ′ precipitation in Al–Cu binary alloys, Multiscale modeling of θ′ precipitation in Al–Cu binary alloys. Acta Mater. 2004, 52, 2973–2987; https://doi.org/10.1016/j.actamat.2004.03.001.Search in Google Scholar

13. Bergers, L. J., De Hosson, J. T. M., Geers, M., Hoefnagels, J. Anomalous precipitation hardening in Al-(1 wt %) Cu thin films. Mater. Sci. Eng. A 2018, 722, 37–46.10.1016/j.msea.2018.02.083Search in Google Scholar

14. Perovic, V., Purdy, G. R., Brown, L. M. Autocatalytic nucleation and elastic stabilization of linear arrays of plate-shaped precipitates. Acta Metall. 1981, 29, 889–902; https://doi.org/10.1016/0001-6160(81)90131-0.Search in Google Scholar

15. Lavernia, E. J., Srivatsan, T. S., Mohamed, F. A. Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys. J. Mater. Sci. 1990, 25, 1137–1158; https://doi.org/10.1007/BF00585420.Search in Google Scholar

16. Dorin, T., Deschamps, A., De Geuser, F., Sigli, C. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy. Acta Mater. 2014, 75, 134–146; https://doi.org/10.1016/j.actamat.2014.04.046.Search in Google Scholar

17. Gable, B. M., Zhu, A. W., Csontos, A. A., Starke, E. A.Jr. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al–Li–Cu–X alloy. J. Light Met. 2001, 1, 1–14; https://doi.org/10.1016/s1471-5317(00)00002-x.Search in Google Scholar

18. Cassada, W. A., Shiflet, G. J., Starke, E. A. The effect of plastic deformation on Al2CuLi (T1) precipitation. Metall. Trans. A 1991, 22, 299–306; https://doi.org/10.1007/bf02656799.Search in Google Scholar

19. Ringer, S. P., Muddle, B. C., Polmear, I. J. Effects of cold work on precipitation in Al–Cu–Mg–(Ag) and Al–Cu–Li–(Mg–Ag) alloys. Metall. Mater. Trans. 1995, 26, 1659–1671; https://doi.org/10.1007/bf02670753.Search in Google Scholar

20. Dursun, T., Soutis, C. Review: recent developments in advanced aircraft aluminium alloys. Mater. Des. 2014, 56, 862–871; https://doi.org/10.1016/j.matdes.2013.12.002.Search in Google Scholar

21. Bodily, B., Heinimann, M., Bray, G., Colvin, E., Witters, J. Advanced aluminum and aluminum–lithium solutions for derivative and next generation aerospace structures. In SAE Paper No 2012-01-1874, 2012.10.4271/2012-01-1874Search in Google Scholar

22. Cassada, W. A., Shiflet, G. J., Starke, E. A. Mechanism of Al2CuLi (T1) nucleation and growth. OR Trans. 1991, 22, 287–297; https://doi.org/10.1007/BF02656798.Search in Google Scholar

23. Yoshimura, R., Konno, T. J., Abe, E., Hiraga, K. Acta Mater. 2003, 51, 4251–4266; https://doi.org/10.1016/S1359-6454(03)00253-2.Search in Google Scholar

24. Zhu, S. Q., Shih, H. C., Cui, X. Y., Yu, C. Y., Ringer, S. P. Design of solute clustering during thermomechanical processing of AA6016 Al–Mg–Si alloy. Acta Mater. 2021, 203, 116455; https://doi.org/10.1016/j.actamat.2020.10.074.Search in Google Scholar

25. Silcok, J. M., Heal, T. J., Hardy, H. K. Some metallographic observations on aged aluminum–copper alloys. J. Inst. Met. 1953–1954, 82, 239–248.Search in Google Scholar

26. Vaughan, D. The determination of the lattice parameters of the θ structure formed in an Al–Cu alloy. Phil. Mag. 1968, 18, 1305–1308; https://doi.org/10.1080/14786436808227760.Search in Google Scholar

27. Aaronson, H. I., Clark, J. B., Laird, C. Interfacial energy of dislocation and of coherent interphase boundaries. Met. Sci. J. 1968, 2, 155; https://doi.org/10.1179/030634568790443305.Search in Google Scholar

28. Hardy, H. K., Silock, J. M. The Phase Sections at 500 and 350°C of aluminum-rich aluminum–copper–lithium Al-alloys. J. Inst. Met. 1956, 84, 423–428.Search in Google Scholar

29. Noble, B., Thompson, G. E. T1 (Al2CuLi) precipitation in aluminum–copper–lithium alloys. Metal Sci. J. 1972, 6, 167–174; https://doi.org/10.1179/030634572790445975.Search in Google Scholar

30. Katsikis, S., Noble, B., Harris, S. J. Microstructural stability during low temperature exposure of alloys within the Al–Li–Cu–Mg system. Mater. Sci. Eng. A. 2008, 485, 613–620; https://doi.org/10.1016/j.msea.2007.10.020.Search in Google Scholar

31. Yoshimura, R., Konno, T. J., Abe, E., Hiraga, K. Transmission electron microscopy study of the early stage of precipitates in aged Al–Li–Cu alloys. Acta Mater. 2003, 51, 2891–2903; https://doi.org/10.1016/S1359-6454(03)00104-6.Search in Google Scholar

32. Khan, A. K., Robinson, J. S. Effect of silver on precipitation response of Al–Li–Cu–Mg alloys. Mater. Sci. Technol. 2008, 24, 1369–1377; https://doi.org/10.1179/174328408X262391.Search in Google Scholar

33. Ghosh, K. S., Das, K., Chatterjee, U. K. Kinetics of solid-state reactions in Al–Li–Cu–Mg–Zr alloys from calorimetric studies. Mater. Trans. 2007, 38. 1965–1975; https://doi.org/10.1007/s11661-007-9250-2.Search in Google Scholar

34. Courtney, T. H. Mechanical Behavior of Materials; McGraw-Hill: New York, 1990.Search in Google Scholar

35. Betsofen, S., Antipov, V. V., Knyazev, M. Al–Cu–Li and Al–Mg–Li alloys: phase composition, texture, and anisotropy of mechanical properties (Review). Russ. Metall. 2016, 4, 326–341; https://doi.org/10.1134/S0036029516040042.Search in Google Scholar

36. Lavernia, E., Grant, N. Review: aluminium-lithium alloys. J. Mater. Sci. 1987, 22, 1521–1529; https://doi.org/10.1007/BF01132370.Search in Google Scholar

37. Srivatsan, T., Lavernia, E., Eswara, N. P., Kutumbarao, V. Quasi-static strength, deformation, and fracture behavior of aluminum-lithium alloys. In Aluminum–Lithium Alloys: Processing, Properties, and Applications; Prasad, E., Gokhale, A., Wanhill, H., Eds. Butterworth-Heinemann, Elsevier Inc: Oxford, 2014, pp. 305–339.10.1016/B978-0-12-401698-9.00010-0Search in Google Scholar

38. Ashton, R. F., Thompson, D. S., Gayle, F. W. The effect of processing on the properties of Al-Li alloys. In Aluminum Alloys their Physical and Mechanical Properties; Starke, J., Sanders, J., Eds. EMAS: Warley, England, 1986, pp. 403–417.Search in Google Scholar

39. Prasad, K., Prasad, N., Gokhale, A. Microstructure and precipitate characteristics of aluminum-lithium alloys. In Aluminum–Lithium Alloys: Processing, Properties, and Applications; Prasad, E., Gokhale, A., Wanhill, H., Eds. Butterworth-Heinemann, Elsevier Inc: Oxford, 2014, pp. 99–137.10.1016/B978-0-12-401698-9.00004-5Search in Google Scholar

40. Kumar, K. S., Heubaum, F. H. The effect of Li content on the natural ageing response of Al–Cu–Li–Mg–Ag–Zr alloys. Acta Mater. 1997, 45, 2317–2327; https://doi.org/10.1016/s1359-6454(96)00360-6.Search in Google Scholar

41. Csontos, A. A., Starke, E. A. The effect of inhomogeneous plastic deformation on the ductility and fracture behavior of age hardenable aluminum alloys. Int. J. Plast. 2005, 21, 1097–1118; https://doi.org/10.1016/j.ijplas.2004.03.003.Search in Google Scholar

42. Miura, Y., Yusu, K., Aibe, S., Furukawa, M., Nemoto, M. Formation and stability of orowan loops in Al–Li single crystals. In Aluminium–Lithium Alloys; Sanders, T. H., Starke, E. A., Eds. Mater. Components Eng. Publ.: Birmingham, 1989, pp. 827–836.Search in Google Scholar

Received: 2021-10-30
Accepted: 2022-01-25
Published Online: 2022-06-21
Published in Print: 2022-07-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8626/html
Scroll to top button