Investigation on an anti-corrosion Cu-rich multiple-principal-element alloy strengthened and toughened by nano-scaled L12-type ordered particles
-
Chengyan Jin
, Wanpeng Li
Abstract
In this study, the microstructure and mechanical properties of a Cu-rich multiple-principal-element alloy with the composition (Cu50Ni20Cr20Mn10)95Al5 (at.%) were investigated. It was found that after 900 °C/1 h annealing process, the as-cast alloy has achieved promising mechanical properties with a yield stress of 510 MPa, an ultimate tensile stress of 820 MPa and tensile elongation of 30 %. These properties are superior to those of traditional nickel–aluminum bronze (NAB) alloys. Moreover, the as-annealed alloy exhibited much better anti-corrosion properties with respect to the NBA alloys. Transmission electron microscopy observations showed that high-number-density nano-scaled L12-type ordered particles have precipitated in the Cu-rich phase after heat treatment and this was regarded as the main mechanism responsible for the enhancement of yield stress.
-
Author contribution: Chengyan Jin: Mechanical properties and microstructural investigation, Writing (Original Draft). Xinghao Du: Conceptualization, Supervising, Formal analysis, Writing (Review&Editing). Wanpeng Li: TEM investigation. Wenyu Chen: Anti-corrosion investigation. Fei Yan: SEM Investigation. Chuanxin Shi: XRD Investigation. Tzu-Hsiu Chou: Mechanical investigation. Jacob Chih-Ching Huang: Review&Editing.
-
Research funding: This work was supported by Science and Technology Agency of Liaoning province, P.R. China under the contract No. 2005JH2/107.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Culpan, E. A., Rose, G. J. Mater. Sci. 1978, 13, 1647. https://doi.org/10.1007/BF00548728.Search in Google Scholar
2. Jahanafrooz, A., Hasan, F., Lorimer, G. W., Ridley, N. Metall. Mater. Trans. A 1983, 14, 1951. https://doi.org/10.1007/BF02662362.Search in Google Scholar
3. Wharton, J. A., Barik, R. C., Kear, G., Wood, R. J. K., Stokes, K. R., Walsh, F. C. Corrosion Sci. 2005, 47, 3336. https://doi.org/10.1016/j.corsci.2005.05.053.Search in Google Scholar
4. Ren, L., Ma, Z., Li, M., Zhang, Y., Liu, W. Q., Liao, Z. H., Yang, K. J. Mater. Sci. Technol. 2014, 30, 699. https://doi.org/10.1016/j.jmst.2013.12.014.Search in Google Scholar
5. Ma, Z., Ren, L., Liu, R., Yang, K., Zhang, Y., Liao, Z. H., Liu, W. Q., Qi, M., Misra, R. D. K. J. Mater. Sci. Technol. 2015, 32, 723. https://doi.org/10.1016/j.jmst.2015.04.002.Search in Google Scholar
6. Wu, Y. D., Li, Y. L., Liu, X. L., Wang, Q. J., Chen, X. M., Hui, X. D. Scripta Mater. 2021, 202, 113992. https://doi.org/10.1016/J.SCRIPTAMAT.2021.113992.Search in Google Scholar
7. Cantor, B., Chang, I. T. H., Knight, P., Vincent, A. J. B. Mater. Sci. Eng., A 2004, 375–377, 213. https://doi.org/10.1016/j.msea.2003.10.257.Search in Google Scholar
8. Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299. https://doi.org/10.1002/adem.200300567.Search in Google Scholar
9. Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P., Ritchie, R. O. Science 2014, 345, 1153. https://doi.org/10.1126/science.1254581.Search in Google Scholar PubMed
10. Yang, T., Zhao, Y. L., Tong, Y., Jiao, Z. B., Wei, J., Cai, J. X., Han, X. D., Chen, D., Hu, A., Kai, J. J., Lu, K., Liu, Y., Liu, C. T. Science 2018, 362, 933. https://doi.org/10.1126/science.aas8815.Search in Google Scholar PubMed
11. Yang, T., Zhao, Y. L., Li, W. P., Yu, C. Y., Luan, J. H., Lin, D. Y., Fan, L., Jiao, Z. B., Liu, W. H., Liu, X. J., Kai, J. J., Huang, J. C., Liu, C. T. Science 2020, 369, 427. https://doi.org/10.1126/science.abb6830.Search in Google Scholar PubMed
12. Luo, H., Sohn, S. S., Lu, W. J., Lin, L. L., Li, X. G., Soundararajan, C. K., Krieger, W., Li, Z. M., Raabe, D. Nat. Commun. 2020, 11, 3404. https://doi.org/10.1038/s41467-020-17295-1.Search in Google Scholar PubMed PubMed Central
13. Nguyen, N. T., Asghari, R. P., Sathiyamoorthi, P., Zargaran, A., Lee, C. S., Kim, H. S. Nat. Commun. 2020, 11, 2736. https://doi.org/10.1038/s41467-020-16601-1.Search in Google Scholar PubMed PubMed Central
14. Du, X. H., Li, W. P., Chang, H. T., Duan, G. S., Wu, B. L., Huang, J. C., Chen, F. R., Liu, C. T., Chuang, W. S., Lu, Y., Sui, M. L., Huang, E. W. Nat. Commun. 2020, 11, 2390. https://doi.org/10.1038/s41467-020-16085-z.Search in Google Scholar PubMed PubMed Central
15. Wu, H., Huang, S. R., Zhu, H. G., Xie, Z. H. Scripta Mater. 2021, 195, 113724. https://doi.org/10.1016/J.SCRIPTAMAT.2021.113724.Search in Google Scholar
16. Zhou, E., Qiao, D. X., Yang, Y., Xu, D. K., Lu, Y. P., Wang, J. J., Smith, J. A., Li, H. B., Zhao, H. L., Liaw, P. K., Wang, F. H. J. Mater. Sci. Technol. 2020, 46, 201. https://doi.org/10.1016/j.jmst.2020.01.039.Search in Google Scholar
17. Rao, Z. Y., Wang, X., Zhu, J., Chen, X. H., Wang, L., Si, J. J., Wu, Y. D., Hui, X. D. Intermetallics 2016, 77, 23. https://doi.org/10.1016/j.intermet.2016.06.011.Search in Google Scholar
18. Yang, S. H., Yu, W. W., Liu, T., Li, C. Z., Zhang, Y. F., Qu, Y. D. Mater. Res. Express 2019, 6, 076501. https://doi.org/10.1088/2053-1591/ab12ad.Search in Google Scholar
19. Churyumov, A. Y., Pozdniakov, A. V., Bazlov, A. I., Mao, H., Polkin, V. I., Louzguine-Luzgin, D. V. J. Occup. Med. 2019, 71, 3481. https://doi.org/10.1007/s11837-019-03644-z.Search in Google Scholar
20. Qin, G., Chen, R. R., Liaw, P. K., Gao, Y. F., Li, X. Q., Zheng, H. T., Wang, L., Su, Y. Q., Guo, J. J., Fu, H. Z. Scripta Mater. 2019, 172, 51. https://doi.org/10.1016/j.scriptamat.2019.07.008.Search in Google Scholar
21. Qin, G., Chen, R. R., Mao, H. H., Yan, Y., Li, X. J., Schonecker, S., Vitos, L., Li, X. Q. Acta Mater. 2021, 208, 116763. https://doi.org/10.1016/J.ACTAMAT.2021.116763.Search in Google Scholar
22. Takeuchi, A., Inoue, A. Mater. Trans. 2005, 46, 2817. https://doi.org/10.2320/matertrans.46.2817.Search in Google Scholar
23. Song, R. K., Ye, F., Yang, C. X., Wu, S. J. J. Mater. Sci. Technol. 2018, 34, 2014. https://doi.org/10.1016/j.jmst.2018.02.026.Search in Google Scholar
24. Wen, H. M., Topping, T. D., Isheim, D., Seidman, D. N., Lavernia, E. J. Acta Mater. 2013, 61, 2769. https://doi.org/10.1016/j.actamat.2012.09.036.Search in Google Scholar
25. Zhao, Y. Y., Nieh, T. G. Intermetallics 2017, 86, 45. https://doi.org/10.1016/j.intermet.2017.03.011.Search in Google Scholar
26. Seidman, D. N., Marquis, E. A., Dunand, D. C. Acta Mater. 2002, 50, 4021. https://doi.org/10.1016/S1359-6454(02)00201-X.Search in Google Scholar
27. Gladman, T. Mater. Sci. Technol. 1999, 15, 30. https://doi.org/10.1179/026708399773002782.Search in Google Scholar
28. Guo, L. Q., Bai, Y., Xu, B. Z., Pan, W., Li, J. X., Qiao, L. J. Corrosion Sci. 2013, 70, 140. https://doi.org/10.1016/j.corsci.2013.01.022.Search in Google Scholar
29. Jin, Z. H., Ge, H. H., Lin, W. W., Zong, Y. W., Liu, S. J., Shi, J. M. Appl. Surf. Sci. 2014, 322, 47. https://doi.org/10.1016/j.apsusc.2014.09.205.Search in Google Scholar
30. Natishan, P. M., O’Grady, W. E. J. Electrochem. Soc. 2014, 161, C421. https://doi.org/10.1149/2.1011409jes.Search in Google Scholar
31. Lopesino, P., Alcantara, J., De la Fuente, D., Chico, B., Jimenez, J. A., Morcillo, M. Metals 2018, 8, 866. https://doi.org/10.3390/met8110866.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Aluminium nitride dispersion strengthened steel
- Synthesis of spherical mullite/Yb2SiO5 composite EBC powder by using mechanical alloying and spray dry processes
- Absorber film deposition by hollow cathode discharge for solar thermal collectors application
- Linear and nonlinear optical properties of 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene
- Machine learning doped MgB2 superconductor critical temperature from topological indices
- Investigation on an anti-corrosion Cu-rich multiple-principal-element alloy strengthened and toughened by nano-scaled L12-type ordered particles
- Study on the microstructure and age hardening capability in Al–Cu–Li alloys with different Cu/Li ratio
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Aluminium nitride dispersion strengthened steel
- Synthesis of spherical mullite/Yb2SiO5 composite EBC powder by using mechanical alloying and spray dry processes
- Absorber film deposition by hollow cathode discharge for solar thermal collectors application
- Linear and nonlinear optical properties of 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene
- Machine learning doped MgB2 superconductor critical temperature from topological indices
- Investigation on an anti-corrosion Cu-rich multiple-principal-element alloy strengthened and toughened by nano-scaled L12-type ordered particles
- Study on the microstructure and age hardening capability in Al–Cu–Li alloys with different Cu/Li ratio
- News
- DGM – Deutsche Gesellschaft für Materialkunde