Abstract
In this research, 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene was studied as a compound with high nonlinear optical properties for use in optical devices. For this purpose, the compound was synthesized and its structure was identified by melting point and infrared and nuclear magnetic resonance spectroscopy. Then, the bandgap energy of the title compound was determined to be 2.4 eV using the Tauc relation. Density functional theory and time-dependent methods were used for calculations of magnetic moment, natural band orbital, analysis of frontier molecular orbitals, first and second order hyperpolarizability. The results showed a dipole moment of 2.45 Debye for the molecule. The calculation of the hyperpolarizability showed the values of −109.6, 128.9 and −3694 a.u. for the first, second and third order polarizability respectively. Finally, the experimental and computational results showed that the compound has significant nonlinear optical properties and will be suitable for nonlinear optics studies and applications in optical devices.
Funding source: Payame Noor University
Award Identifier / Grant number: Unassigned
Acknowledgements
The authors wish to acknowledge the support of this work by Payame Noor University Research council.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Lembrikov, B. I. Introductory Chapter: nonlinear optical phenomena. In Nonlinear Optics-Novel Results in Theory and Applications; IntechOpen: London, 2019.10.5772/intechopen.83718Search in Google Scholar
2. Stegeman, G. I., Stegeman, R. A. Nonlinear Optics: Phenomena, Materials, and Devices; Wiley & Sons: New York, US, 2012.Search in Google Scholar
3. Dmitriev, V. G., Gurzadyan, G. G., Nikogosyan, D. N. Handbook of Nonlinear Optical Crystals; Springer: Berlin, 2013. https://www.springer.com/gp/book/9783540653943.Search in Google Scholar
4. Yu, J., Cui, Y., Wu, C., Yang, Y., Wang, Z., O’Keeffe, M., Chen, B., Qian, G. Angew Chem. Int. Ed. Engl. 2012, 51, 10542. https://doi.org/10.1002/anie.201204160.Search in Google Scholar PubMed
5. Gandhimathi, R., Dhanasekaran, R. Cryst. Res. Technol. 2012, 47, 385. https://doi/abs/10.1002/crat.201100510.10.1002/crat.201100510Search in Google Scholar
6. Li, R., Hu, W., Liu, Y., Zhu, D. Micro- and nanocrystals of organic semiconductors. Acc. Chem. Res. 2010, 43, 529–540. https://doi.org/10.1021/ar900228v.Search in Google Scholar PubMed
7. Zhu, X. H., Peng, J., Cao, Y., Roncali, J. Chem. Soc. Rev. 2011, 40, 3509. https://doi.org/10.1039/C1CS15016B.Search in Google Scholar PubMed
8. Wang, C., Huanli, D., Wenping, H. u., Yunqi, L., Daoben, Z. Chem. Rev. 2012, 112, 2208. https://doi.org/10.1021/cr100380z.Search in Google Scholar PubMed
9. Zhang, F., Wu, D., Feng, X. J. Mater. Chem. 2011, 21, 17590. https://doi.org/10.1039/C1JM12801A.Search in Google Scholar
10. Barragan, E., Poyil, A., Yang, C., Wang, H., Bugarin, A. Org. Chem. Frontiers. 2019, 6, 152. https://doi.org/10.1039/C8QO00938D.Search in Google Scholar
11. Beaujuge, P., Fréchet, J. J. Am. Chem. Soc. 2011, 133, 20009. https://doi.org/10.1021/ja108115y.Search in Google Scholar PubMed
12. Dalton, L. R., Günter, P., Jazbinsek, M., Kwon, O. P., Sullivan, P. A. Organic Electro-Optics and Photonics: Molecules, Polymers and Crystals; Cambridge University Press: Cambridge, UK, 2015. https://www.amazon.com/Organic-Electro-Optics-Photonics-Molecules-Polymers/dp/0521449650.10.1017/CBO9781139043885Search in Google Scholar
13. Dalton, L. R., Sullivan, P. A., Bale, D. H. Chem. Rev. 2010, 110, 25. https://doi.org/10.1021/cr9000429.Search in Google Scholar PubMed
14. Sutton, J. J., Preston, D., Traber, P., Steinmetzer, J., Wu, X., Kayal, S., Sun, X. Z., Crowley, J. D., George, M. W., Kupfer, S., Gordon, K. C. J. Am. Chem. Soc. 2021, 143, 9082. https://doi.org/10.1021/jacs.1c02755.Search in Google Scholar PubMed
15. Pron, A., Gawrys, P., Zagorska, M., Djurado, D., Demadrille, R. Chem. Soc. Rev. 2010, 39, 2577. https://doi.org/10.1039/B907999H.Search in Google Scholar PubMed
16. Zhu, X. H., Peng, J., Cao, Y., Roncali, J. Chem. Soc. Rev. 2011, 40, 3509. https://doi.org/10.1039/C1CS15016B.Search in Google Scholar PubMed
17. Liu, J., Jiang, L., Hu, W., Liu, Y., ZhuMonolayer, D. Sci. China Chem. 2019, 62, 313. https://doi.org/10.1007/s11426-018-9411-5.Search in Google Scholar
18. Zhao, G., Dong, H., Jiang, L., Zhao, H., Qin, X., Hu, W. Appl. Phys. Lett. 2012, 101, 103302. https://doi.org/10.1063/1.4750063.Search in Google Scholar
19. Beaujuge, P. M., Fréchet, J. M. J. Am. Chem. Soc. 2011, 133, 20009. https://doi.org/10.1021/ja2073643.Search in Google Scholar PubMed
20. Mishra, A., Bäuerle, P. Angew. Chem. Int. 2020, 51, 2020. https://doi.org/10.1002/anie.201102326.Search in Google Scholar PubMed
21. Zhang, F., Wu, D., Xu, Y., Feng, X. J. Mater. Chem. 2011, 21, 17590. https://doi.org/10.1039/C1JM12801A.Search in Google Scholar
22. Sylvianti, N., Kim, Y. H., Kim, D. G., Maduwu, R. D., Jin, H. C., Moon, D. K., Kim, J. H. Macromol. Res. 2018, 26, 552. https://doi.org/10.1007/s13233-018-6066-4.Search in Google Scholar
23. Xue, Y., Dou, Y., An, L., Zheng, Y., Zhang, L., Liu, Y. RSC Adv. 2016, 6, 7002. https://doi.org/10.1039/C5RA25733F.Search in Google Scholar
24. Béreau, V., Duhayon, C., Sournia-Saquet, A., Sutter, J. P. Inorg. Chem. 2012, 51, 1309. https://doi.org/10.1021/ic201208c.Search in Google Scholar PubMed
25. Kwak, S. W., Choi, B. H., Lee, J. H., Hwang, H., Lee, J., Kwon, H., Chung, Y., Lee, K. M., Park, M. H. Inorg. Chem. 2017, 56, 6039. https://doi.org/10.1021/acs.inorgchem.7b00768.Search in Google Scholar PubMed
26. Ferger, M., Berger, S. M., Rauch, F., Schönitz, M., Rühe, J., Krebs, J., Friedrich, A., Marder, T. B. Chem. Eur. J. 2021, 27, 9094. https://doi.org/10.1002/chem.202100632.Search in Google Scholar PubMed PubMed Central
27. Adamo, C., Jacquemin, D. Chem. Soc. Rev. 2013, 42, 845. https://doi.org/10.1039/C2CS35394F.Search in Google Scholar
28. Veved, A., Ejuh, G. W., Djongyang, N. Chin. J. Phys. 2020, 63, 213. https://doi.org/10.1016/j.cjph.2019.10.022.Search in Google Scholar
29. Jacquemin, D. J. Chem. Theor. Comput. 2016, 12, 3993. https://doi.org/10.1021/acs.jctc.6b00498.Search in Google Scholar PubMed PubMed Central
30. Titov, E. Molecules 2021, 26, 4245. https://doi.org/10.3390/molecules26144245.Search in Google Scholar PubMed PubMed Central
31. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X. Gaussian 09, Revision A. 02; Gaussian, Inc.: Wallingford, CT, 2016.Search in Google Scholar
32. Sarkar, R., Pasqua, M. B., Loos, P. F., Jacquemin, D. J. Chem. Theor. Comput. 2021, 17, 1117. https://doi.org/10.1021/acs.jctc.0c01228.Search in Google Scholar PubMed
33. Janjua, M. R. S. A., Jamil, S., Ahmad, T., Yang, Z., Mahmood, A., Pan, S. Comput. Theor. Chem. 2014, 1033, 6. https://doi.org/10.1016/j.comptc.2014.01.031.Search in Google Scholar
34. Kosar, N., Mahmood, T., Ayub, K., Tabassum, S., Arshad, M., Gilani, M. A. Opt Laser. Technol. 2019, 120, 105753. https://doi.org/10.1016/j.optlastec.2019.105753.Search in Google Scholar
35. Zhang, C. C., Xu, H. L., Hu, Y. Y., Sun, S. L., Su, Z. M. J. Phys. Chem. B 2011, 115, 2035. https://doi.org/10.1021/jp110412n.Search in Google Scholar PubMed
36. Rofouei, M. K., Ghalami, Z., Gharamaleki, J. A., Ghoulipour, V., Bruno, G., Rudbari, H. A. Z. Anorg. Allg. Chem. 2012, 638, 798. https://doi.org/10.1002/zaac.201100557.Search in Google Scholar
37. Günter, P. Nonlinear Optical Effects and Materials; Springer: Berlin, 2012. https://link.springer.com/book/10.1007%2F978-3-540-49713-4.Search in Google Scholar
38. Irie, M. Photochem. Photobiol. Sci. 2010, 9, 1535. https://doi.org/10.1039/C0PP00251H.Search in Google Scholar
39. Jayabharathi, J., Thanikachalam, V., Devi, K. B., Perumal, M. V. Spectrochim. Acta, Part A 2012, 86, 69. https://doi.org/10.1016/j.saa.2011.09.067.Search in Google Scholar PubMed
40. Valverde, C., Castro, S. A. L., Vaz, G. R., Ferreira, J. L. A., Baseia, B., Osório, F. A. P. Acta Chim. Slov. 2018, 65, 739.10.17344/acsi.2018.4462Search in Google Scholar
41. Khan, M. U., Ibrahim, M., Khalid, M., Braga, A. A. C., Ahmed, S., Sultan, A. J. Cluster Sci. 2019, 30, 415. https://doi.org/10.1007/s10876-018-01489-1.Search in Google Scholar
42. Udhayakumari, D., Saravanamoorthy, S., Ashok, M., Velmathi, S. Tetrahedron Lett. 2011, 52, 4631. https://doi.org/10.1016/j.tetlet.2011.06.097.Search in Google Scholar
43. Khan, M. U., Khalid, M., Ibrahim, M., Braga, A. A. C., Safdar, M., Al-Saadi, A. A., Janjua, M. R. S. A. J. Phys. Chem. C 2018, 122, 4009. https://doi.org/10.1021/acs.jpcc.7b12293.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Aluminium nitride dispersion strengthened steel
- Synthesis of spherical mullite/Yb2SiO5 composite EBC powder by using mechanical alloying and spray dry processes
- Absorber film deposition by hollow cathode discharge for solar thermal collectors application
- Linear and nonlinear optical properties of 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene
- Machine learning doped MgB2 superconductor critical temperature from topological indices
- Investigation on an anti-corrosion Cu-rich multiple-principal-element alloy strengthened and toughened by nano-scaled L12-type ordered particles
- Study on the microstructure and age hardening capability in Al–Cu–Li alloys with different Cu/Li ratio
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Aluminium nitride dispersion strengthened steel
- Synthesis of spherical mullite/Yb2SiO5 composite EBC powder by using mechanical alloying and spray dry processes
- Absorber film deposition by hollow cathode discharge for solar thermal collectors application
- Linear and nonlinear optical properties of 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene
- Machine learning doped MgB2 superconductor critical temperature from topological indices
- Investigation on an anti-corrosion Cu-rich multiple-principal-element alloy strengthened and toughened by nano-scaled L12-type ordered particles
- Study on the microstructure and age hardening capability in Al–Cu–Li alloys with different Cu/Li ratio
- News
- DGM – Deutsche Gesellschaft für Materialkunde