Home Linear and nonlinear optical properties of 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene
Article
Licensed
Unlicensed Requires Authentication

Linear and nonlinear optical properties of 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene

  • Fatemeh Mostaghni ORCID logo EMAIL logo , Homa Shafiekhani and Nosrat Madadi Mahani
Published/Copyright: May 24, 2022
Become an author with De Gruyter Brill

Abstract

In this research, 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene was studied as a compound with high nonlinear optical properties for use in optical devices. For this purpose, the compound was synthesized and its structure was identified by melting point and infrared and nuclear magnetic resonance spectroscopy. Then, the bandgap energy of the title compound was determined to be 2.4 eV using the Tauc relation. Density functional theory and time-dependent methods were used for calculations of magnetic moment, natural band orbital, analysis of frontier molecular orbitals, first and second order hyperpolarizability. The results showed a dipole moment of 2.45 Debye for the molecule. The calculation of the hyperpolarizability showed the values of −109.6, 128.9 and −3694 a.u. for the first, second and third order polarizability respectively. Finally, the experimental and computational results showed that the compound has significant nonlinear optical properties and will be suitable for nonlinear optics studies and applications in optical devices.


Corresponding author: Fatemeh Mostaghni, Department of Chemistry, Payame Noor University, PB BOX 19395-4697, Tehran, Iran, E-mail:

Funding source: Payame Noor University

Award Identifier / Grant number: Unassigned

Acknowledgements

The authors wish to acknowledge the support of this work by Payame Noor University Research council.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Lembrikov, B. I. Introductory Chapter: nonlinear optical phenomena. In Nonlinear Optics-Novel Results in Theory and Applications; IntechOpen: London, 2019.10.5772/intechopen.83718Search in Google Scholar

2. Stegeman, G. I., Stegeman, R. A. Nonlinear Optics: Phenomena, Materials, and Devices; Wiley & Sons: New York, US, 2012.Search in Google Scholar

3. Dmitriev, V. G., Gurzadyan, G. G., Nikogosyan, D. N. Handbook of Nonlinear Optical Crystals; Springer: Berlin, 2013. https://www.springer.com/gp/book/9783540653943.Search in Google Scholar

4. Yu, J., Cui, Y., Wu, C., Yang, Y., Wang, Z., O’Keeffe, M., Chen, B., Qian, G. Angew Chem. Int. Ed. Engl. 2012, 51, 10542. https://doi.org/10.1002/anie.201204160.Search in Google Scholar PubMed

5. Gandhimathi, R., Dhanasekaran, R. Cryst. Res. Technol. 2012, 47, 385. https://doi/abs/10.1002/crat.201100510.10.1002/crat.201100510Search in Google Scholar

6. Li, R., Hu, W., Liu, Y., Zhu, D. Micro- and nanocrystals of organic semiconductors. Acc. Chem. Res. 2010, 43, 529–540. https://doi.org/10.1021/ar900228v.Search in Google Scholar PubMed

7. Zhu, X. H., Peng, J., Cao, Y., Roncali, J. Chem. Soc. Rev. 2011, 40, 3509. https://doi.org/10.1039/C1CS15016B.Search in Google Scholar PubMed

8. Wang, C., Huanli, D., Wenping, H. u., Yunqi, L., Daoben, Z. Chem. Rev. 2012, 112, 2208. https://doi.org/10.1021/cr100380z.Search in Google Scholar PubMed

9. Zhang, F., Wu, D., Feng, X. J. Mater. Chem. 2011, 21, 17590. https://doi.org/10.1039/C1JM12801A.Search in Google Scholar

10. Barragan, E., Poyil, A., Yang, C., Wang, H., Bugarin, A. Org. Chem. Frontiers. 2019, 6, 152. https://doi.org/10.1039/C8QO00938D.Search in Google Scholar

11. Beaujuge, P., Fréchet, J. J. Am. Chem. Soc. 2011, 133, 20009. https://doi.org/10.1021/ja108115y.Search in Google Scholar PubMed

12. Dalton, L. R., Günter, P., Jazbinsek, M., Kwon, O. P., Sullivan, P. A. Organic Electro-Optics and Photonics: Molecules, Polymers and Crystals; Cambridge University Press: Cambridge, UK, 2015. https://www.amazon.com/Organic-Electro-Optics-Photonics-Molecules-Polymers/dp/0521449650.10.1017/CBO9781139043885Search in Google Scholar

13. Dalton, L. R., Sullivan, P. A., Bale, D. H. Chem. Rev. 2010, 110, 25. https://doi.org/10.1021/cr9000429.Search in Google Scholar PubMed

14. Sutton, J. J., Preston, D., Traber, P., Steinmetzer, J., Wu, X., Kayal, S., Sun, X. Z., Crowley, J. D., George, M. W., Kupfer, S., Gordon, K. C. J. Am. Chem. Soc. 2021, 143, 9082. https://doi.org/10.1021/jacs.1c02755.Search in Google Scholar PubMed

15. Pron, A., Gawrys, P., Zagorska, M., Djurado, D., Demadrille, R. Chem. Soc. Rev. 2010, 39, 2577. https://doi.org/10.1039/B907999H.Search in Google Scholar PubMed

16. Zhu, X. H., Peng, J., Cao, Y., Roncali, J. Chem. Soc. Rev. 2011, 40, 3509. https://doi.org/10.1039/C1CS15016B.Search in Google Scholar PubMed

17. Liu, J., Jiang, L., Hu, W., Liu, Y., ZhuMonolayer, D. Sci. China Chem. 2019, 62, 313. https://doi.org/10.1007/s11426-018-9411-5.Search in Google Scholar

18. Zhao, G., Dong, H., Jiang, L., Zhao, H., Qin, X., Hu, W. Appl. Phys. Lett. 2012, 101, 103302. https://doi.org/10.1063/1.4750063.Search in Google Scholar

19. Beaujuge, P. M., Fréchet, J. M. J. Am. Chem. Soc. 2011, 133, 20009. https://doi.org/10.1021/ja2073643.Search in Google Scholar PubMed

20. Mishra, A., Bäuerle, P. Angew. Chem. Int. 2020, 51, 2020. https://doi.org/10.1002/anie.201102326.Search in Google Scholar PubMed

21. Zhang, F., Wu, D., Xu, Y., Feng, X. J. Mater. Chem. 2011, 21, 17590. https://doi.org/10.1039/C1JM12801A.Search in Google Scholar

22. Sylvianti, N., Kim, Y. H., Kim, D. G., Maduwu, R. D., Jin, H. C., Moon, D. K., Kim, J. H. Macromol. Res. 2018, 26, 552. https://doi.org/10.1007/s13233-018-6066-4.Search in Google Scholar

23. Xue, Y., Dou, Y., An, L., Zheng, Y., Zhang, L., Liu, Y. RSC Adv. 2016, 6, 7002. https://doi.org/10.1039/C5RA25733F.Search in Google Scholar

24. Béreau, V., Duhayon, C., Sournia-Saquet, A., Sutter, J. P. Inorg. Chem. 2012, 51, 1309. https://doi.org/10.1021/ic201208c.Search in Google Scholar PubMed

25. Kwak, S. W., Choi, B. H., Lee, J. H., Hwang, H., Lee, J., Kwon, H., Chung, Y., Lee, K. M., Park, M. H. Inorg. Chem. 2017, 56, 6039. https://doi.org/10.1021/acs.inorgchem.7b00768.Search in Google Scholar PubMed

26. Ferger, M., Berger, S. M., Rauch, F., Schönitz, M., Rühe, J., Krebs, J., Friedrich, A., Marder, T. B. Chem. Eur. J. 2021, 27, 9094. https://doi.org/10.1002/chem.202100632.Search in Google Scholar PubMed PubMed Central

27. Adamo, C., Jacquemin, D. Chem. Soc. Rev. 2013, 42, 845. https://doi.org/10.1039/C2CS35394F.Search in Google Scholar

28. Veved, A., Ejuh, G. W., Djongyang, N. Chin. J. Phys. 2020, 63, 213. https://doi.org/10.1016/j.cjph.2019.10.022.Search in Google Scholar

29. Jacquemin, D. J. Chem. Theor. Comput. 2016, 12, 3993. https://doi.org/10.1021/acs.jctc.6b00498.Search in Google Scholar PubMed PubMed Central

30. Titov, E. Molecules 2021, 26, 4245. https://doi.org/10.3390/molecules26144245.Search in Google Scholar PubMed PubMed Central

31. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X. Gaussian 09, Revision A. 02; Gaussian, Inc.: Wallingford, CT, 2016.Search in Google Scholar

32. Sarkar, R., Pasqua, M. B., Loos, P. F., Jacquemin, D. J. Chem. Theor. Comput. 2021, 17, 1117. https://doi.org/10.1021/acs.jctc.0c01228.Search in Google Scholar PubMed

33. Janjua, M. R. S. A., Jamil, S., Ahmad, T., Yang, Z., Mahmood, A., Pan, S. Comput. Theor. Chem. 2014, 1033, 6. https://doi.org/10.1016/j.comptc.2014.01.031.Search in Google Scholar

34. Kosar, N., Mahmood, T., Ayub, K., Tabassum, S., Arshad, M., Gilani, M. A. Opt Laser. Technol. 2019, 120, 105753. https://doi.org/10.1016/j.optlastec.2019.105753.Search in Google Scholar

35. Zhang, C. C., Xu, H. L., Hu, Y. Y., Sun, S. L., Su, Z. M. J. Phys. Chem. B 2011, 115, 2035. https://doi.org/10.1021/jp110412n.Search in Google Scholar PubMed

36. Rofouei, M. K., Ghalami, Z., Gharamaleki, J. A., Ghoulipour, V., Bruno, G., Rudbari, H. A. Z. Anorg. Allg. Chem. 2012, 638, 798. https://doi.org/10.1002/zaac.201100557.Search in Google Scholar

37. Günter, P. Nonlinear Optical Effects and Materials; Springer: Berlin, 2012. https://link.springer.com/book/10.1007%2F978-3-540-49713-4.Search in Google Scholar

38. Irie, M. Photochem. Photobiol. Sci. 2010, 9, 1535. https://doi.org/10.1039/C0PP00251H.Search in Google Scholar

39. Jayabharathi, J., Thanikachalam, V., Devi, K. B., Perumal, M. V. Spectrochim. Acta, Part A 2012, 86, 69. https://doi.org/10.1016/j.saa.2011.09.067.Search in Google Scholar PubMed

40. Valverde, C., Castro, S. A. L., Vaz, G. R., Ferreira, J. L. A., Baseia, B., Osório, F. A. P. Acta Chim. Slov. 2018, 65, 739.10.17344/acsi.2018.4462Search in Google Scholar

41. Khan, M. U., Ibrahim, M., Khalid, M., Braga, A. A. C., Ahmed, S., Sultan, A. J. Cluster Sci. 2019, 30, 415. https://doi.org/10.1007/s10876-018-01489-1.Search in Google Scholar

42. Udhayakumari, D., Saravanamoorthy, S., Ashok, M., Velmathi, S. Tetrahedron Lett. 2011, 52, 4631. https://doi.org/10.1016/j.tetlet.2011.06.097.Search in Google Scholar

43. Khan, M. U., Khalid, M., Ibrahim, M., Braga, A. A. C., Safdar, M., Al-Saadi, A. A., Janjua, M. R. S. A. J. Phys. Chem. C 2018, 122, 4009. https://doi.org/10.1021/acs.jpcc.7b12293.Search in Google Scholar

Received: 2021-06-26
Revised: 2022-04-27
Accepted: 2022-02-02
Published Online: 2022-05-24
Published in Print: 2022-07-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8434/html
Scroll to top button