Startseite Linear and nonlinear optical properties of 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Linear and nonlinear optical properties of 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene

  • Fatemeh Mostaghni ORCID logo EMAIL logo , Homa Shafiekhani und Nosrat Madadi Mahani
Veröffentlicht/Copyright: 24. Mai 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this research, 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene was studied as a compound with high nonlinear optical properties for use in optical devices. For this purpose, the compound was synthesized and its structure was identified by melting point and infrared and nuclear magnetic resonance spectroscopy. Then, the bandgap energy of the title compound was determined to be 2.4 eV using the Tauc relation. Density functional theory and time-dependent methods were used for calculations of magnetic moment, natural band orbital, analysis of frontier molecular orbitals, first and second order hyperpolarizability. The results showed a dipole moment of 2.45 Debye for the molecule. The calculation of the hyperpolarizability showed the values of −109.6, 128.9 and −3694 a.u. for the first, second and third order polarizability respectively. Finally, the experimental and computational results showed that the compound has significant nonlinear optical properties and will be suitable for nonlinear optics studies and applications in optical devices.


Corresponding author: Fatemeh Mostaghni, Department of Chemistry, Payame Noor University, PB BOX 19395-4697, Tehran, Iran, E-mail:

Funding source: Payame Noor University

Award Identifier / Grant number: Unassigned

Acknowledgements

The authors wish to acknowledge the support of this work by Payame Noor University Research council.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Lembrikov, B. I. Introductory Chapter: nonlinear optical phenomena. In Nonlinear Optics-Novel Results in Theory and Applications; IntechOpen: London, 2019.10.5772/intechopen.83718Suche in Google Scholar

2. Stegeman, G. I., Stegeman, R. A. Nonlinear Optics: Phenomena, Materials, and Devices; Wiley & Sons: New York, US, 2012.Suche in Google Scholar

3. Dmitriev, V. G., Gurzadyan, G. G., Nikogosyan, D. N. Handbook of Nonlinear Optical Crystals; Springer: Berlin, 2013. https://www.springer.com/gp/book/9783540653943.Suche in Google Scholar

4. Yu, J., Cui, Y., Wu, C., Yang, Y., Wang, Z., O’Keeffe, M., Chen, B., Qian, G. Angew Chem. Int. Ed. Engl. 2012, 51, 10542. https://doi.org/10.1002/anie.201204160.Suche in Google Scholar PubMed

5. Gandhimathi, R., Dhanasekaran, R. Cryst. Res. Technol. 2012, 47, 385. https://doi/abs/10.1002/crat.201100510.10.1002/crat.201100510Suche in Google Scholar

6. Li, R., Hu, W., Liu, Y., Zhu, D. Micro- and nanocrystals of organic semiconductors. Acc. Chem. Res. 2010, 43, 529–540. https://doi.org/10.1021/ar900228v.Suche in Google Scholar PubMed

7. Zhu, X. H., Peng, J., Cao, Y., Roncali, J. Chem. Soc. Rev. 2011, 40, 3509. https://doi.org/10.1039/C1CS15016B.Suche in Google Scholar PubMed

8. Wang, C., Huanli, D., Wenping, H. u., Yunqi, L., Daoben, Z. Chem. Rev. 2012, 112, 2208. https://doi.org/10.1021/cr100380z.Suche in Google Scholar PubMed

9. Zhang, F., Wu, D., Feng, X. J. Mater. Chem. 2011, 21, 17590. https://doi.org/10.1039/C1JM12801A.Suche in Google Scholar

10. Barragan, E., Poyil, A., Yang, C., Wang, H., Bugarin, A. Org. Chem. Frontiers. 2019, 6, 152. https://doi.org/10.1039/C8QO00938D.Suche in Google Scholar

11. Beaujuge, P., Fréchet, J. J. Am. Chem. Soc. 2011, 133, 20009. https://doi.org/10.1021/ja108115y.Suche in Google Scholar PubMed

12. Dalton, L. R., Günter, P., Jazbinsek, M., Kwon, O. P., Sullivan, P. A. Organic Electro-Optics and Photonics: Molecules, Polymers and Crystals; Cambridge University Press: Cambridge, UK, 2015. https://www.amazon.com/Organic-Electro-Optics-Photonics-Molecules-Polymers/dp/0521449650.10.1017/CBO9781139043885Suche in Google Scholar

13. Dalton, L. R., Sullivan, P. A., Bale, D. H. Chem. Rev. 2010, 110, 25. https://doi.org/10.1021/cr9000429.Suche in Google Scholar PubMed

14. Sutton, J. J., Preston, D., Traber, P., Steinmetzer, J., Wu, X., Kayal, S., Sun, X. Z., Crowley, J. D., George, M. W., Kupfer, S., Gordon, K. C. J. Am. Chem. Soc. 2021, 143, 9082. https://doi.org/10.1021/jacs.1c02755.Suche in Google Scholar PubMed

15. Pron, A., Gawrys, P., Zagorska, M., Djurado, D., Demadrille, R. Chem. Soc. Rev. 2010, 39, 2577. https://doi.org/10.1039/B907999H.Suche in Google Scholar PubMed

16. Zhu, X. H., Peng, J., Cao, Y., Roncali, J. Chem. Soc. Rev. 2011, 40, 3509. https://doi.org/10.1039/C1CS15016B.Suche in Google Scholar PubMed

17. Liu, J., Jiang, L., Hu, W., Liu, Y., ZhuMonolayer, D. Sci. China Chem. 2019, 62, 313. https://doi.org/10.1007/s11426-018-9411-5.Suche in Google Scholar

18. Zhao, G., Dong, H., Jiang, L., Zhao, H., Qin, X., Hu, W. Appl. Phys. Lett. 2012, 101, 103302. https://doi.org/10.1063/1.4750063.Suche in Google Scholar

19. Beaujuge, P. M., Fréchet, J. M. J. Am. Chem. Soc. 2011, 133, 20009. https://doi.org/10.1021/ja2073643.Suche in Google Scholar PubMed

20. Mishra, A., Bäuerle, P. Angew. Chem. Int. 2020, 51, 2020. https://doi.org/10.1002/anie.201102326.Suche in Google Scholar PubMed

21. Zhang, F., Wu, D., Xu, Y., Feng, X. J. Mater. Chem. 2011, 21, 17590. https://doi.org/10.1039/C1JM12801A.Suche in Google Scholar

22. Sylvianti, N., Kim, Y. H., Kim, D. G., Maduwu, R. D., Jin, H. C., Moon, D. K., Kim, J. H. Macromol. Res. 2018, 26, 552. https://doi.org/10.1007/s13233-018-6066-4.Suche in Google Scholar

23. Xue, Y., Dou, Y., An, L., Zheng, Y., Zhang, L., Liu, Y. RSC Adv. 2016, 6, 7002. https://doi.org/10.1039/C5RA25733F.Suche in Google Scholar

24. Béreau, V., Duhayon, C., Sournia-Saquet, A., Sutter, J. P. Inorg. Chem. 2012, 51, 1309. https://doi.org/10.1021/ic201208c.Suche in Google Scholar PubMed

25. Kwak, S. W., Choi, B. H., Lee, J. H., Hwang, H., Lee, J., Kwon, H., Chung, Y., Lee, K. M., Park, M. H. Inorg. Chem. 2017, 56, 6039. https://doi.org/10.1021/acs.inorgchem.7b00768.Suche in Google Scholar PubMed

26. Ferger, M., Berger, S. M., Rauch, F., Schönitz, M., Rühe, J., Krebs, J., Friedrich, A., Marder, T. B. Chem. Eur. J. 2021, 27, 9094. https://doi.org/10.1002/chem.202100632.Suche in Google Scholar PubMed PubMed Central

27. Adamo, C., Jacquemin, D. Chem. Soc. Rev. 2013, 42, 845. https://doi.org/10.1039/C2CS35394F.Suche in Google Scholar

28. Veved, A., Ejuh, G. W., Djongyang, N. Chin. J. Phys. 2020, 63, 213. https://doi.org/10.1016/j.cjph.2019.10.022.Suche in Google Scholar

29. Jacquemin, D. J. Chem. Theor. Comput. 2016, 12, 3993. https://doi.org/10.1021/acs.jctc.6b00498.Suche in Google Scholar PubMed PubMed Central

30. Titov, E. Molecules 2021, 26, 4245. https://doi.org/10.3390/molecules26144245.Suche in Google Scholar PubMed PubMed Central

31. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X. Gaussian 09, Revision A. 02; Gaussian, Inc.: Wallingford, CT, 2016.Suche in Google Scholar

32. Sarkar, R., Pasqua, M. B., Loos, P. F., Jacquemin, D. J. Chem. Theor. Comput. 2021, 17, 1117. https://doi.org/10.1021/acs.jctc.0c01228.Suche in Google Scholar PubMed

33. Janjua, M. R. S. A., Jamil, S., Ahmad, T., Yang, Z., Mahmood, A., Pan, S. Comput. Theor. Chem. 2014, 1033, 6. https://doi.org/10.1016/j.comptc.2014.01.031.Suche in Google Scholar

34. Kosar, N., Mahmood, T., Ayub, K., Tabassum, S., Arshad, M., Gilani, M. A. Opt Laser. Technol. 2019, 120, 105753. https://doi.org/10.1016/j.optlastec.2019.105753.Suche in Google Scholar

35. Zhang, C. C., Xu, H. L., Hu, Y. Y., Sun, S. L., Su, Z. M. J. Phys. Chem. B 2011, 115, 2035. https://doi.org/10.1021/jp110412n.Suche in Google Scholar PubMed

36. Rofouei, M. K., Ghalami, Z., Gharamaleki, J. A., Ghoulipour, V., Bruno, G., Rudbari, H. A. Z. Anorg. Allg. Chem. 2012, 638, 798. https://doi.org/10.1002/zaac.201100557.Suche in Google Scholar

37. Günter, P. Nonlinear Optical Effects and Materials; Springer: Berlin, 2012. https://link.springer.com/book/10.1007%2F978-3-540-49713-4.Suche in Google Scholar

38. Irie, M. Photochem. Photobiol. Sci. 2010, 9, 1535. https://doi.org/10.1039/C0PP00251H.Suche in Google Scholar

39. Jayabharathi, J., Thanikachalam, V., Devi, K. B., Perumal, M. V. Spectrochim. Acta, Part A 2012, 86, 69. https://doi.org/10.1016/j.saa.2011.09.067.Suche in Google Scholar PubMed

40. Valverde, C., Castro, S. A. L., Vaz, G. R., Ferreira, J. L. A., Baseia, B., Osório, F. A. P. Acta Chim. Slov. 2018, 65, 739.10.17344/acsi.2018.4462Suche in Google Scholar

41. Khan, M. U., Ibrahim, M., Khalid, M., Braga, A. A. C., Ahmed, S., Sultan, A. J. Cluster Sci. 2019, 30, 415. https://doi.org/10.1007/s10876-018-01489-1.Suche in Google Scholar

42. Udhayakumari, D., Saravanamoorthy, S., Ashok, M., Velmathi, S. Tetrahedron Lett. 2011, 52, 4631. https://doi.org/10.1016/j.tetlet.2011.06.097.Suche in Google Scholar

43. Khan, M. U., Khalid, M., Ibrahim, M., Braga, A. A. C., Safdar, M., Al-Saadi, A. A., Janjua, M. R. S. A. J. Phys. Chem. C 2018, 122, 4009. https://doi.org/10.1021/acs.jpcc.7b12293.Suche in Google Scholar

Received: 2021-06-26
Revised: 2022-04-27
Accepted: 2022-02-02
Published Online: 2022-05-24
Published in Print: 2022-07-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8434/html?lang=de
Button zum nach oben scrollen