Abstract
In this research, 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene was studied as a compound with high nonlinear optical properties for use in optical devices. For this purpose, the compound was synthesized and its structure was identified by melting point and infrared and nuclear magnetic resonance spectroscopy. Then, the bandgap energy of the title compound was determined to be 2.4 eV using the Tauc relation. Density functional theory and time-dependent methods were used for calculations of magnetic moment, natural band orbital, analysis of frontier molecular orbitals, first and second order hyperpolarizability. The results showed a dipole moment of 2.45 Debye for the molecule. The calculation of the hyperpolarizability showed the values of −109.6, 128.9 and −3694 a.u. for the first, second and third order polarizability respectively. Finally, the experimental and computational results showed that the compound has significant nonlinear optical properties and will be suitable for nonlinear optics studies and applications in optical devices.
Funding source: Payame Noor University
Award Identifier / Grant number: Unassigned
Acknowledgements
The authors wish to acknowledge the support of this work by Payame Noor University Research council.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Lembrikov, B. I. Introductory Chapter: nonlinear optical phenomena. In Nonlinear Optics-Novel Results in Theory and Applications; IntechOpen: London, 2019.10.5772/intechopen.83718Suche in Google Scholar
2. Stegeman, G. I., Stegeman, R. A. Nonlinear Optics: Phenomena, Materials, and Devices; Wiley & Sons: New York, US, 2012.Suche in Google Scholar
3. Dmitriev, V. G., Gurzadyan, G. G., Nikogosyan, D. N. Handbook of Nonlinear Optical Crystals; Springer: Berlin, 2013. https://www.springer.com/gp/book/9783540653943.Suche in Google Scholar
4. Yu, J., Cui, Y., Wu, C., Yang, Y., Wang, Z., O’Keeffe, M., Chen, B., Qian, G. Angew Chem. Int. Ed. Engl. 2012, 51, 10542. https://doi.org/10.1002/anie.201204160.Suche in Google Scholar PubMed
5. Gandhimathi, R., Dhanasekaran, R. Cryst. Res. Technol. 2012, 47, 385. https://doi/abs/10.1002/crat.201100510.10.1002/crat.201100510Suche in Google Scholar
6. Li, R., Hu, W., Liu, Y., Zhu, D. Micro- and nanocrystals of organic semiconductors. Acc. Chem. Res. 2010, 43, 529–540. https://doi.org/10.1021/ar900228v.Suche in Google Scholar PubMed
7. Zhu, X. H., Peng, J., Cao, Y., Roncali, J. Chem. Soc. Rev. 2011, 40, 3509. https://doi.org/10.1039/C1CS15016B.Suche in Google Scholar PubMed
8. Wang, C., Huanli, D., Wenping, H. u., Yunqi, L., Daoben, Z. Chem. Rev. 2012, 112, 2208. https://doi.org/10.1021/cr100380z.Suche in Google Scholar PubMed
9. Zhang, F., Wu, D., Feng, X. J. Mater. Chem. 2011, 21, 17590. https://doi.org/10.1039/C1JM12801A.Suche in Google Scholar
10. Barragan, E., Poyil, A., Yang, C., Wang, H., Bugarin, A. Org. Chem. Frontiers. 2019, 6, 152. https://doi.org/10.1039/C8QO00938D.Suche in Google Scholar
11. Beaujuge, P., Fréchet, J. J. Am. Chem. Soc. 2011, 133, 20009. https://doi.org/10.1021/ja108115y.Suche in Google Scholar PubMed
12. Dalton, L. R., Günter, P., Jazbinsek, M., Kwon, O. P., Sullivan, P. A. Organic Electro-Optics and Photonics: Molecules, Polymers and Crystals; Cambridge University Press: Cambridge, UK, 2015. https://www.amazon.com/Organic-Electro-Optics-Photonics-Molecules-Polymers/dp/0521449650.10.1017/CBO9781139043885Suche in Google Scholar
13. Dalton, L. R., Sullivan, P. A., Bale, D. H. Chem. Rev. 2010, 110, 25. https://doi.org/10.1021/cr9000429.Suche in Google Scholar PubMed
14. Sutton, J. J., Preston, D., Traber, P., Steinmetzer, J., Wu, X., Kayal, S., Sun, X. Z., Crowley, J. D., George, M. W., Kupfer, S., Gordon, K. C. J. Am. Chem. Soc. 2021, 143, 9082. https://doi.org/10.1021/jacs.1c02755.Suche in Google Scholar PubMed
15. Pron, A., Gawrys, P., Zagorska, M., Djurado, D., Demadrille, R. Chem. Soc. Rev. 2010, 39, 2577. https://doi.org/10.1039/B907999H.Suche in Google Scholar PubMed
16. Zhu, X. H., Peng, J., Cao, Y., Roncali, J. Chem. Soc. Rev. 2011, 40, 3509. https://doi.org/10.1039/C1CS15016B.Suche in Google Scholar PubMed
17. Liu, J., Jiang, L., Hu, W., Liu, Y., ZhuMonolayer, D. Sci. China Chem. 2019, 62, 313. https://doi.org/10.1007/s11426-018-9411-5.Suche in Google Scholar
18. Zhao, G., Dong, H., Jiang, L., Zhao, H., Qin, X., Hu, W. Appl. Phys. Lett. 2012, 101, 103302. https://doi.org/10.1063/1.4750063.Suche in Google Scholar
19. Beaujuge, P. M., Fréchet, J. M. J. Am. Chem. Soc. 2011, 133, 20009. https://doi.org/10.1021/ja2073643.Suche in Google Scholar PubMed
20. Mishra, A., Bäuerle, P. Angew. Chem. Int. 2020, 51, 2020. https://doi.org/10.1002/anie.201102326.Suche in Google Scholar PubMed
21. Zhang, F., Wu, D., Xu, Y., Feng, X. J. Mater. Chem. 2011, 21, 17590. https://doi.org/10.1039/C1JM12801A.Suche in Google Scholar
22. Sylvianti, N., Kim, Y. H., Kim, D. G., Maduwu, R. D., Jin, H. C., Moon, D. K., Kim, J. H. Macromol. Res. 2018, 26, 552. https://doi.org/10.1007/s13233-018-6066-4.Suche in Google Scholar
23. Xue, Y., Dou, Y., An, L., Zheng, Y., Zhang, L., Liu, Y. RSC Adv. 2016, 6, 7002. https://doi.org/10.1039/C5RA25733F.Suche in Google Scholar
24. Béreau, V., Duhayon, C., Sournia-Saquet, A., Sutter, J. P. Inorg. Chem. 2012, 51, 1309. https://doi.org/10.1021/ic201208c.Suche in Google Scholar PubMed
25. Kwak, S. W., Choi, B. H., Lee, J. H., Hwang, H., Lee, J., Kwon, H., Chung, Y., Lee, K. M., Park, M. H. Inorg. Chem. 2017, 56, 6039. https://doi.org/10.1021/acs.inorgchem.7b00768.Suche in Google Scholar PubMed
26. Ferger, M., Berger, S. M., Rauch, F., Schönitz, M., Rühe, J., Krebs, J., Friedrich, A., Marder, T. B. Chem. Eur. J. 2021, 27, 9094. https://doi.org/10.1002/chem.202100632.Suche in Google Scholar PubMed PubMed Central
27. Adamo, C., Jacquemin, D. Chem. Soc. Rev. 2013, 42, 845. https://doi.org/10.1039/C2CS35394F.Suche in Google Scholar
28. Veved, A., Ejuh, G. W., Djongyang, N. Chin. J. Phys. 2020, 63, 213. https://doi.org/10.1016/j.cjph.2019.10.022.Suche in Google Scholar
29. Jacquemin, D. J. Chem. Theor. Comput. 2016, 12, 3993. https://doi.org/10.1021/acs.jctc.6b00498.Suche in Google Scholar PubMed PubMed Central
30. Titov, E. Molecules 2021, 26, 4245. https://doi.org/10.3390/molecules26144245.Suche in Google Scholar PubMed PubMed Central
31. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X. Gaussian 09, Revision A. 02; Gaussian, Inc.: Wallingford, CT, 2016.Suche in Google Scholar
32. Sarkar, R., Pasqua, M. B., Loos, P. F., Jacquemin, D. J. Chem. Theor. Comput. 2021, 17, 1117. https://doi.org/10.1021/acs.jctc.0c01228.Suche in Google Scholar PubMed
33. Janjua, M. R. S. A., Jamil, S., Ahmad, T., Yang, Z., Mahmood, A., Pan, S. Comput. Theor. Chem. 2014, 1033, 6. https://doi.org/10.1016/j.comptc.2014.01.031.Suche in Google Scholar
34. Kosar, N., Mahmood, T., Ayub, K., Tabassum, S., Arshad, M., Gilani, M. A. Opt Laser. Technol. 2019, 120, 105753. https://doi.org/10.1016/j.optlastec.2019.105753.Suche in Google Scholar
35. Zhang, C. C., Xu, H. L., Hu, Y. Y., Sun, S. L., Su, Z. M. J. Phys. Chem. B 2011, 115, 2035. https://doi.org/10.1021/jp110412n.Suche in Google Scholar PubMed
36. Rofouei, M. K., Ghalami, Z., Gharamaleki, J. A., Ghoulipour, V., Bruno, G., Rudbari, H. A. Z. Anorg. Allg. Chem. 2012, 638, 798. https://doi.org/10.1002/zaac.201100557.Suche in Google Scholar
37. Günter, P. Nonlinear Optical Effects and Materials; Springer: Berlin, 2012. https://link.springer.com/book/10.1007%2F978-3-540-49713-4.Suche in Google Scholar
38. Irie, M. Photochem. Photobiol. Sci. 2010, 9, 1535. https://doi.org/10.1039/C0PP00251H.Suche in Google Scholar
39. Jayabharathi, J., Thanikachalam, V., Devi, K. B., Perumal, M. V. Spectrochim. Acta, Part A 2012, 86, 69. https://doi.org/10.1016/j.saa.2011.09.067.Suche in Google Scholar PubMed
40. Valverde, C., Castro, S. A. L., Vaz, G. R., Ferreira, J. L. A., Baseia, B., Osório, F. A. P. Acta Chim. Slov. 2018, 65, 739.10.17344/acsi.2018.4462Suche in Google Scholar
41. Khan, M. U., Ibrahim, M., Khalid, M., Braga, A. A. C., Ahmed, S., Sultan, A. J. Cluster Sci. 2019, 30, 415. https://doi.org/10.1007/s10876-018-01489-1.Suche in Google Scholar
42. Udhayakumari, D., Saravanamoorthy, S., Ashok, M., Velmathi, S. Tetrahedron Lett. 2011, 52, 4631. https://doi.org/10.1016/j.tetlet.2011.06.097.Suche in Google Scholar
43. Khan, M. U., Khalid, M., Ibrahim, M., Braga, A. A. C., Safdar, M., Al-Saadi, A. A., Janjua, M. R. S. A. J. Phys. Chem. C 2018, 122, 4009. https://doi.org/10.1021/acs.jpcc.7b12293.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Aluminium nitride dispersion strengthened steel
- Synthesis of spherical mullite/Yb2SiO5 composite EBC powder by using mechanical alloying and spray dry processes
- Absorber film deposition by hollow cathode discharge for solar thermal collectors application
- Linear and nonlinear optical properties of 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene
- Machine learning doped MgB2 superconductor critical temperature from topological indices
- Investigation on an anti-corrosion Cu-rich multiple-principal-element alloy strengthened and toughened by nano-scaled L12-type ordered particles
- Study on the microstructure and age hardening capability in Al–Cu–Li alloys with different Cu/Li ratio
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Aluminium nitride dispersion strengthened steel
- Synthesis of spherical mullite/Yb2SiO5 composite EBC powder by using mechanical alloying and spray dry processes
- Absorber film deposition by hollow cathode discharge for solar thermal collectors application
- Linear and nonlinear optical properties of 1-(2-methoxyphenyl)-3-(4-chlorophenyl) triazene
- Machine learning doped MgB2 superconductor critical temperature from topological indices
- Investigation on an anti-corrosion Cu-rich multiple-principal-element alloy strengthened and toughened by nano-scaled L12-type ordered particles
- Study on the microstructure and age hardening capability in Al–Cu–Li alloys with different Cu/Li ratio
- News
- DGM – Deutsche Gesellschaft für Materialkunde