Home Technology Investigation of the influence of the energy conditions of pulsed plasma-chemical synthesis on the morphological and structural properties of copper-containing silica-based nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Investigation of the influence of the energy conditions of pulsed plasma-chemical synthesis on the morphological and structural properties of copper-containing silica-based nanocomposites

  • Denis Ponomarev , Galina Kholodnaya ORCID logo EMAIL logo , Roman Sazonov , Olga Lapteva , Fedor Konusov and Ruslan Gadirov
Published/Copyright: February 25, 2022
Become an author with De Gruyter Brill

Abstract

This paper presents the results of a study of the effect of energy conditions (additional heating of the walls of the reaction chamber and subsequent action of an electron beam on the synthesized powder) of pulsed plasma-chemical synthesis on the morphology, average geometric size, phase and chemical composition of copper-containing silica-based nanocomposites. The nanocomposites were synthesized using a TEA-500 pulsed electron accelerator. It was the first time that copper-containing silica-based nanocomposites had been prepared using the pulsed plasma-chemical synthesis. The values of the band gap for the as-prepared nanocomposites were calculated. The nanocomposites were characterized by means of transmission electron microscopy and X-ray diffraction. The analysis revealed the changes in the morphology and phase composition of the nanocomposites upon energy conditions.


Corresponding author: Galina Kholodnaya, Tomsk Polytechnic University, Lenin ave. 30, 634050 Tomsk, Russia, E-mail: .

Funding source: Russian Science FoundationTomsk Polytechnic University

Award Identifier / Grant number: Unassigned

Award Identifier / Grant number: Unassigned

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Russian Science Foundation, research project no. 18-73-10011. The chemical composition of the synthesized copper-containing silica-based nanocomposite was studied in the Scientific Analytical Center of Tomsk Polytechnic University.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bigham, A., Foroughi, F., Rezvani Ghomi, E., Rafienia, M., Neisiany, R. E., Ramakrishna, S. Bio-Des. Manuf. 2020, 3, 281. https://doi.org/10.1007/s42242-020-00094-4.Search in Google Scholar

2. Leung, J. Y. S., Chen, Y., Nagelkerken, I., Zhang, S., Xie, Z., Connell, S. D. J. Small 2020, 16, 2003186. https://doi.org/10.1002/smll.202003186.Search in Google Scholar PubMed

3. Arash, B., Jiang, J.-W., Rabczuk, T. Appl. Phys. Rev. 2015, 2, 021301. https://doi.org/10.1063/1.4916728.Search in Google Scholar

4. Wheeler, J. M., Harvey, C., Li, N., Misra, A., Mara, N. A., Maeder, X., Michler, J., Pathak, S. Mater. Sci. Eng. A 2021, 804, 140522. https://doi.org/10.1016/j.msea.2020.140522.Search in Google Scholar

5. Li, C.-X., Huang, R.-T., Shi, X.-Y. CrystEngComm 2021, 23, 1472. https://doi.org/10.1039/d0ce01641a.Search in Google Scholar

6. Hoang, M. T., Pham, T. D., Verheyen, D., Nguyen, M. K., Pham, T. T., Zhu, J., Van der Bruggen, B. Chem. Eng. Sci. 2020, 228, 115998. https://doi.org/10.1016/j.ces.2020.115998.Search in Google Scholar

7. Tenkyong, T., Bachan, N., Raja, J., Kumar, P. N., Shyla, J. M. Mater. Sci-Poland 2015, 33, 826. https://doi.org/10.1515/msp-2015-0097.Search in Google Scholar

8. Homaunmir, V., Tohidi, S. H., Grigorya, G., Ayatollah Zada Shirazi, M. J. Nanoparticles 2013, 156813. https://doi.org/10.1155/2013/156813.Search in Google Scholar

9. Kakhki, R. M., Ahsani, F., Mir, N. Mater. Sci.: Mater. Electron. 2016, 27, 11509. https://doi.org/10.1007/s10854-016-5279-6.Search in Google Scholar

10. Niu, X., Zhao, T., Yuan, F., Zhu, Y. Sci. Rep. 2015, 5, 9153. https://doi.org/10.1038/srep09153.Search in Google Scholar PubMed PubMed Central

11. Rajabzadeh, M., Khalifeh, R., Eshghi, H., Hafizi, A. J. Ind. Eng. Chem. 2020, 89, 458. https://doi.org/10.1016/j.jiec.2020.06.020.Search in Google Scholar

12. Kordas, G. J. Am. Ceram. Soc. 2020, 103, 1536. https://doi.org/10.1111/jace.16851.Search in Google Scholar

13. Ramya, E., Thirumurugan, A., Rapheal, V., Anand, K. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100240. https://doi.org/10.1016/j.enmm.2019.100240.Search in Google Scholar

14. Wang, X., Xu, L., Hao, Y., Zhang, J., Cui, F., Cui, T., Zhang, Q. Chem. Lett. 2018, 47, 228. https://doi.org/10.1246/cl.170952.Search in Google Scholar

15. Khiavi, N. D., Katal, R., Eshkalak, S. K., Masudy-Panah, S., Ramakrishna, S., Jiangyong, H. Nanomaterials 2019, 9, 1011. https://doi.org/10.3390/nano9071011.Search in Google Scholar PubMed PubMed Central

16. Wu, J., Zhao, X., Xue, L., Su, H., Zeng, S. J. Rare Earths 2020, 38, 46. https://doi.org/10.1016/j.jre.2018.11.005.Search in Google Scholar

17. Zhuravlev, M., Sazonov, R., Kholodnaya, G., Pyatkov, I., Ponomarev, D. J. Phys. Conf. Ser. 2019, 1393, 012156. https://doi.org/10.1088/1742-6596/1393/1/012156.Search in Google Scholar

18. Remnev, G., Shubin, B. Appl. Mech. Mater. 2015, 756, 269–274.10.4028/www.scientific.net/AMM.756.269Search in Google Scholar

19. Kholodnaya, G., Ponomarev, D., Sazonov, R., Remnev, G. Radiat. Phys. Chem. 2014, 103, 114. https://doi.org/10.1016/j.radphyschem.2014.05.048.Search in Google Scholar

20. Sokovnin, S., Balezin, M. Ferroelectrics 2012, 436, 109. https://doi.org/10.1080/10584587.2012.731330.Search in Google Scholar

21. Remnev, G., Furman, E., Pushkarev, A., Karpuzov, S. B., Kondrat’ev, N. A., Goncharov, D. V. Instrum. Exp. Tech. 2004, 47, 394. https://doi.org/10.1023/B:INET.0000032909.92515.b7.10.1023/B:INET.0000032909.92515.b7Search in Google Scholar

22. Kholodnaya, G., Egorov, I., Sazonov, R., Serebrennikov, M., Poloskov, A., Ponomarev, D., Zhirkov, I. Laser Part. Beams 2020, 38, 197. https://doi.org/10.1017/S0263034620000257.Search in Google Scholar

23. Kabyshev, A. V., Konusov, F. V., Remnev, G. E. J. Surf. Invest. X-ray 2011, 5, 228. https://doi.org/10.1134/S1027451011030116.Search in Google Scholar

24. Game, O., Singh, U., Gupta, A. A., Suryawanshi, A., Banpurkar, A., Ogale, S. J. Mater. Chem. A. 2012, 22, 17302.10.1039/c2jm32812gSearch in Google Scholar

25. Hall, B. D., Zanchet, D., Ugarte, D. J. Appl. Crystallogr. 2000, 33, 1335. https://doi.org/10.1107/S0021889800010888.Search in Google Scholar

26. Alexander, L., Klug, H. J. Appl. Phys. 1950, 21, 137. https://doi.org/10.1063/1.1699612.Search in Google Scholar

27. Behjati, S., Sheibani, S., Herritsch, J., Gottfried, J. M. Mater. Res. Bull. 2020, 130, 110920. https://doi.org/10.1016/j.materresbull.2020.110920.Search in Google Scholar

28. Lupan, O., Ababii, N., Mishra, A. K., Gronenberg, O., Vahl, A., Schürmann, U., Duppel, V., Krüger, H., Chow, L., Kienle, L., Faupel, F., Adelung, R., De Leeuw, N. H., Hansen, S. ACS Appl. Mater. Interfaces. 2020, 12, 42248. https://doi.org/10.1021/acsami.0c09879.Search in Google Scholar PubMed

Received: 2021-05-11
Accepted: 2021-10-18
Published Online: 2022-02-25
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8352/pdf
Scroll to top button