Investigation of the influence of the energy conditions of pulsed plasma-chemical synthesis on the morphological and structural properties of copper-containing silica-based nanocomposites
-
Denis Ponomarev
, Galina Kholodnaya, Roman Sazonov
, Olga Lapteva , Fedor Konusov and Ruslan Gadirov
Abstract
This paper presents the results of a study of the effect of energy conditions (additional heating of the walls of the reaction chamber and subsequent action of an electron beam on the synthesized powder) of pulsed plasma-chemical synthesis on the morphology, average geometric size, phase and chemical composition of copper-containing silica-based nanocomposites. The nanocomposites were synthesized using a TEA-500 pulsed electron accelerator. It was the first time that copper-containing silica-based nanocomposites had been prepared using the pulsed plasma-chemical synthesis. The values of the band gap for the as-prepared nanocomposites were calculated. The nanocomposites were characterized by means of transmission electron microscopy and X-ray diffraction. The analysis revealed the changes in the morphology and phase composition of the nanocomposites upon energy conditions.
Funding source: Russian Science FoundationTomsk Polytechnic University
Award Identifier / Grant number: Unassigned
Award Identifier / Grant number: Unassigned
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the Russian Science Foundation, research project no. 18-73-10011. The chemical composition of the synthesized copper-containing silica-based nanocomposite was studied in the Scientific Analytical Center of Tomsk Polytechnic University.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Bigham, A., Foroughi, F., Rezvani Ghomi, E., Rafienia, M., Neisiany, R. E., Ramakrishna, S. Bio-Des. Manuf. 2020, 3, 281. https://doi.org/10.1007/s42242-020-00094-4.Search in Google Scholar
2. Leung, J. Y. S., Chen, Y., Nagelkerken, I., Zhang, S., Xie, Z., Connell, S. D. J. Small 2020, 16, 2003186. https://doi.org/10.1002/smll.202003186.Search in Google Scholar PubMed
3. Arash, B., Jiang, J.-W., Rabczuk, T. Appl. Phys. Rev. 2015, 2, 021301. https://doi.org/10.1063/1.4916728.Search in Google Scholar
4. Wheeler, J. M., Harvey, C., Li, N., Misra, A., Mara, N. A., Maeder, X., Michler, J., Pathak, S. Mater. Sci. Eng. A 2021, 804, 140522. https://doi.org/10.1016/j.msea.2020.140522.Search in Google Scholar
5. Li, C.-X., Huang, R.-T., Shi, X.-Y. CrystEngComm 2021, 23, 1472. https://doi.org/10.1039/d0ce01641a.Search in Google Scholar
6. Hoang, M. T., Pham, T. D., Verheyen, D., Nguyen, M. K., Pham, T. T., Zhu, J., Van der Bruggen, B. Chem. Eng. Sci. 2020, 228, 115998. https://doi.org/10.1016/j.ces.2020.115998.Search in Google Scholar
7. Tenkyong, T., Bachan, N., Raja, J., Kumar, P. N., Shyla, J. M. Mater. Sci-Poland 2015, 33, 826. https://doi.org/10.1515/msp-2015-0097.Search in Google Scholar
8. Homaunmir, V., Tohidi, S. H., Grigorya, G., Ayatollah Zada Shirazi, M. J. Nanoparticles 2013, 156813. https://doi.org/10.1155/2013/156813.Search in Google Scholar
9. Kakhki, R. M., Ahsani, F., Mir, N. Mater. Sci.: Mater. Electron. 2016, 27, 11509. https://doi.org/10.1007/s10854-016-5279-6.Search in Google Scholar
10. Niu, X., Zhao, T., Yuan, F., Zhu, Y. Sci. Rep. 2015, 5, 9153. https://doi.org/10.1038/srep09153.Search in Google Scholar PubMed PubMed Central
11. Rajabzadeh, M., Khalifeh, R., Eshghi, H., Hafizi, A. J. Ind. Eng. Chem. 2020, 89, 458. https://doi.org/10.1016/j.jiec.2020.06.020.Search in Google Scholar
12. Kordas, G. J. Am. Ceram. Soc. 2020, 103, 1536. https://doi.org/10.1111/jace.16851.Search in Google Scholar
13. Ramya, E., Thirumurugan, A., Rapheal, V., Anand, K. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100240. https://doi.org/10.1016/j.enmm.2019.100240.Search in Google Scholar
14. Wang, X., Xu, L., Hao, Y., Zhang, J., Cui, F., Cui, T., Zhang, Q. Chem. Lett. 2018, 47, 228. https://doi.org/10.1246/cl.170952.Search in Google Scholar
15. Khiavi, N. D., Katal, R., Eshkalak, S. K., Masudy-Panah, S., Ramakrishna, S., Jiangyong, H. Nanomaterials 2019, 9, 1011. https://doi.org/10.3390/nano9071011.Search in Google Scholar PubMed PubMed Central
16. Wu, J., Zhao, X., Xue, L., Su, H., Zeng, S. J. Rare Earths 2020, 38, 46. https://doi.org/10.1016/j.jre.2018.11.005.Search in Google Scholar
17. Zhuravlev, M., Sazonov, R., Kholodnaya, G., Pyatkov, I., Ponomarev, D. J. Phys. Conf. Ser. 2019, 1393, 012156. https://doi.org/10.1088/1742-6596/1393/1/012156.Search in Google Scholar
18. Remnev, G., Shubin, B. Appl. Mech. Mater. 2015, 756, 269–274.10.4028/www.scientific.net/AMM.756.269Search in Google Scholar
19. Kholodnaya, G., Ponomarev, D., Sazonov, R., Remnev, G. Radiat. Phys. Chem. 2014, 103, 114. https://doi.org/10.1016/j.radphyschem.2014.05.048.Search in Google Scholar
20. Sokovnin, S., Balezin, M. Ferroelectrics 2012, 436, 109. https://doi.org/10.1080/10584587.2012.731330.Search in Google Scholar
21. Remnev, G., Furman, E., Pushkarev, A., Karpuzov, S. B., Kondrat’ev, N. A., Goncharov, D. V. Instrum. Exp. Tech. 2004, 47, 394. https://doi.org/10.1023/B:INET.0000032909.92515.b7.10.1023/B:INET.0000032909.92515.b7Search in Google Scholar
22. Kholodnaya, G., Egorov, I., Sazonov, R., Serebrennikov, M., Poloskov, A., Ponomarev, D., Zhirkov, I. Laser Part. Beams 2020, 38, 197. https://doi.org/10.1017/S0263034620000257.Search in Google Scholar
23. Kabyshev, A. V., Konusov, F. V., Remnev, G. E. J. Surf. Invest. X-ray 2011, 5, 228. https://doi.org/10.1134/S1027451011030116.Search in Google Scholar
24. Game, O., Singh, U., Gupta, A. A., Suryawanshi, A., Banpurkar, A., Ogale, S. J. Mater. Chem. A. 2012, 22, 17302.10.1039/c2jm32812gSearch in Google Scholar
25. Hall, B. D., Zanchet, D., Ugarte, D. J. Appl. Crystallogr. 2000, 33, 1335. https://doi.org/10.1107/S0021889800010888.Search in Google Scholar
26. Alexander, L., Klug, H. J. Appl. Phys. 1950, 21, 137. https://doi.org/10.1063/1.1699612.Search in Google Scholar
27. Behjati, S., Sheibani, S., Herritsch, J., Gottfried, J. M. Mater. Res. Bull. 2020, 130, 110920. https://doi.org/10.1016/j.materresbull.2020.110920.Search in Google Scholar
28. Lupan, O., Ababii, N., Mishra, A. K., Gronenberg, O., Vahl, A., Schürmann, U., Duppel, V., Krüger, H., Chow, L., Kienle, L., Faupel, F., Adelung, R., De Leeuw, N. H., Hansen, S. ACS Appl. Mater. Interfaces. 2020, 12, 42248. https://doi.org/10.1021/acsami.0c09879.Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Corrosion behavior of hydroxyapatite coated AZ31 and AZ91 Mg alloys by electrostatic spray coating
- Radiation synthesis and characterization of polymeric wet adhesives for attracting and trapping insects
- Promoting the effect of cationic substitution on thermal stability and redox properties of new synthesized Keggin type lacunary polyoxometalates (L-POMs) Ni2.5PMo11 M(H2O)O39 (M = Co, Fe, Cu, Zn)
- Investigation of the influence of the energy conditions of pulsed plasma-chemical synthesis on the morphological and structural properties of copper-containing silica-based nanocomposites
- A computational material study of HoB6 and Co/MgO–HoB6: heavy rare-earth metal hexaborides
- Effects of alloying elements on the microstructure and mechanical properties of as-cast Cr12MoV cold-working die steel
- The effects of rotational and traverse speeds and SiC particles on the microstructure and mechanical properties of AA 5052 in friction stir welding
- Influence of hot extrusion on the microstructure and mechanical properties of Al2O3/7075 aluminum matrix composites
- Short Communication
- Fabrication of magnetic core–shell Fe nanowires by electrochemical deposition
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Corrosion behavior of hydroxyapatite coated AZ31 and AZ91 Mg alloys by electrostatic spray coating
- Radiation synthesis and characterization of polymeric wet adhesives for attracting and trapping insects
- Promoting the effect of cationic substitution on thermal stability and redox properties of new synthesized Keggin type lacunary polyoxometalates (L-POMs) Ni2.5PMo11 M(H2O)O39 (M = Co, Fe, Cu, Zn)
- Investigation of the influence of the energy conditions of pulsed plasma-chemical synthesis on the morphological and structural properties of copper-containing silica-based nanocomposites
- A computational material study of HoB6 and Co/MgO–HoB6: heavy rare-earth metal hexaborides
- Effects of alloying elements on the microstructure and mechanical properties of as-cast Cr12MoV cold-working die steel
- The effects of rotational and traverse speeds and SiC particles on the microstructure and mechanical properties of AA 5052 in friction stir welding
- Influence of hot extrusion on the microstructure and mechanical properties of Al2O3/7075 aluminum matrix composites
- Short Communication
- Fabrication of magnetic core–shell Fe nanowires by electrochemical deposition
- News
- DGM – Deutsche Gesellschaft für Materialkunde