Abstract
Diverse wet adhesives were prepared from oleic acid (OA), polyvinyl pyrrolidone (PVP), and cis-1,4-polyisoprene (PI) at different ratios for attracting and trapping insects. The ratios of (PVP-PI)/OA were 1:2, 1:1 and 2:1 (g/g). The ratio between PVP and PI was 9 to 1 (g/g). The blends were irradiated with doses from 10 to 50 kGy. Adhesion properties, water sorption, Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy were conducted. The results show that the adhesion of all wet adhesives was augmented by increasing the irradiation dose up to 20 kGy. The best wet adhesive composition was 2:1, which contained a high concentration of oleic acid. The wet adhesives of (PVP-PI)/OA were tested to attract and trap flies and mosquitoes.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This publication was supported possible by Academy of Scientific Research and Technology (ASRT), Technology Innovation Commercialization Office (TICO) through Grant Number 29”. The statements made herein are solely responsibility of the authors. Technical support from Radiation Research of Polymer Department, Central Laboratory Unit, National Centre for Radiation Research and Technology at Egyptian Atomic Energy Authority.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Lee, L.-H. Fundamentals of Adhesion; Springer Science & Business Media: New York, 2013. https://doi.10.1007/978-1-4899-2073-7.Search in Google Scholar
2. Yang, J., Bai, R., Chen, B., Suo, Z. Adv. Funct. Mater. 2019, 30, e1901693. https://doi.10.1002/adfm.201901693.10.1002/adfm.201901693Search in Google Scholar
3. Yuk, H., Lin, S., Ma, C., Takaffoli, M., Fang, N. X., Zhao, X. Nat. Commun. 2017, 8, 14230. https://doi.10.1038/ncomms14230.10.1038/ncomms14230Search in Google Scholar PubMed PubMed Central
4. Zhao, Y., Wu, Y., Wang, L., Zhang, M., Chen, X., Liu, M., Fan, J., Liu, J., Zhou, F. Nat. Commun. 2017, 8, 2218. https://doi.10.1038/s41467-017-02387-2.10.1038/s41467-017-02387-2Search in Google Scholar PubMed PubMed Central
5. Annabi, N., Yue, K. A., Tamayol, A., Khademhosseini, A. Eur. J. Pharm. Biopharm. 2015, 95, 27. https://doi.10.1016/j.ejpb.2015.05.022.10.1016/j.ejpb.2015.05.022Search in Google Scholar PubMed PubMed Central
6. Li, L., Celiz, A. D., Yang, J., Yang, Q., Wamala, I., Whyte, W., Seo, B. R., Vasilyev, N. V., Vlassak, J. J., Suo, Z. Science 2017, 357, 378. https://doi.10.1126/science.aah6362.10.1126/science.aah6362Search in Google Scholar PubMed PubMed Central
7. Yuk, H., Zhang, T., Lin, S., Parada, G. A., Zhao, X. Nat. Mater. 2016, 15, 190. https://doi.10.1038/nmat4463.10.1038/nmat4463Search in Google Scholar PubMed PubMed Central
8. Rose, S., Prevoteau, A., Elzière, P., Hourdet, D., Marcellan, A., Leibler, L. Nature 2014, 505, 382. https://doi.10.1038/nature12806.10.1038/nature12806Search in Google Scholar PubMed
9. Rouse, P. E.Jr J. Chem. Phys. 1953, 21, 1272. https://doi.10.1063/1.1699180.10.1063/1.1699180Search in Google Scholar
10. Quinn, J. V. Tissue Adhesives in Clinical Medicine; Decker Inc.: Hamilton, 2005. https://www.worldcat.org/title/tissue-adhesives-in-clinical-medicine/oclc/58597655.Search in Google Scholar
11. Hooke, R. Micrographia; London, 1965. https://www.bl.uk/collection-items/micrographia-by-robert-hooke-1665.Search in Google Scholar
12. Drechsler, W., Federle, W. J. Comp. Physiol. A 2006, 192, 1213. https://doi.10.1007/s00359-006-0150-5.10.1007/s00359-006-0150-5Search in Google Scholar PubMed
13. Beutel, R. G., Gorb, S. N. J. Zool. Syst. Evol. Res. 2001, 39, 177. https://doi.10.1046/j.1439-0469.2001.00155.x.10.1046/j.1439-0469.2001.00155.xSearch in Google Scholar
14. Eisner, T., Aneshansley, D. T. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 6568. https://doi.10.1073/pnas.97.12.6568.10.1073/pnas.97.12.6568Search in Google Scholar PubMed PubMed Central
15. Federle, W., Brainerd, E. L., McMahon, T. A., Hölldobler, B. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 6215. https://doi.10.1073/pnas.111139298.10.1073/pnas.111139298Search in Google Scholar
16. Federle, W., Riehle, M., Curtis, A. S. G., Full, R. J. Integr. Comp. Biol. 2002, 421, 100. https://doi.10.1093/icb/42.6.1100.Search in Google Scholar
17. Waite, J. H. Int. J. Adhesion Adhes. 1987, 7, 9. https://doi.10.1016/0143-7496(87)90048-0.10.1016/0143-7496(87)90048-0Search in Google Scholar
18. Yang, J., Bai, R., Suo, Z. Adv. Mater. 2018, 30, e1800671. https://doi.10.1002/adma.201800671.10.1002/adma.201870395Search in Google Scholar
19. Mao, X., Yuk, H., Zhao, X. J. Mech. Phys. Solid. 2020, 137, 103863. https://doi.10.1016/j.jmps.2020.103863.10.1016/j.jmps.2020.103863Search in Google Scholar
20. Dafader, N. C., Adnan, M. N., Haque, M. E., Huq, D., Akhtar, F. Afr. J. Pure Appl. Chem. 2011, 5, 111. https://doi.10.5897/AJPAC.9000146.Search in Google Scholar
21. Becerra-Bracamontes, F., Sanchez-Diaz, J. C., Gonzalez-Alvarez, A., Ortega-Gudino, P., Michel-Valdivia, E., Martinez-Ruvalcaba, A. J. Appl. Polym. Sci. 2007, 106, 3939. https://doi.10.1002/app.26992.10.1002/app.26992Search in Google Scholar
22. Fei, B., Wach, R. A., Mitomo, H., Yoshii, F., Kume, T. J. Appl. Polym. Sci. 2000, 78, 278. https://doi.10.1002/app.1753.10.1002/1097-4628(20001010)78:2<278::AID-APP60>3.0.CO;2-9Search in Google Scholar
23. Jabbari, E., Nozari, S. Eur. Polym. J. 2000, 36, 2685. https://doi.10.1016/S0014-3057(00)00044-6.10.1016/S0014-3057(00)00044-6Search in Google Scholar
24. Lim, L. S., Rosli, N. A., Ahmad, I., Lazim, A. M., Mohd Amin, M. C. I. Nanomaterials 2017, 7, 399. https://doi.10.3390/nano7110399.10.3390/nano7110399Search in Google Scholar
25. Rosiak, J. M., Ulanski, P. Radiat. Phys. Chem. 1999, 55, 139. https://doi.10.1016/S0969-806X(98)00319-3.10.1016/S0969-806X(98)00319-3Search in Google Scholar
26. Foroutan, H., Khodabakhsh, M., Rabbani, M. Int. J. Radiat. Res. 2007, 5, 131. http://ijrr.com/article-1-326-en.html.Search in Google Scholar
27. Wojtkowski, P. A. Agroecological Economics: Sustainability and Biodiversity, 1st ed.; Academic Press, 2008. https://www.sciencedirect.com/book/9780123741172/agroecological-economics.10.1016/B978-012374117-2.50007-8Search in Google Scholar
28. Kaloostian, G. H. J. Econ. Entomol. 1961, 54, 1009. https://doi.10.1093/jee/54.5.1009.10.1093/jee/54.5.1009Search in Google Scholar
29. Chin, H., Sallehudin, S., Fathi, O. H. J. Trop. Med. Parasitol. 2008, 31, 1. http://www.caht.ca/evaluation-of-the-humaneness-of-rodent-capture-using-glue-traps/.Search in Google Scholar
30. Ryan, L., Molyneux, D. H. Sci. Appl. 1981, 1, 349. https://www.cabdirect.org/cabdirect/abstract/19822902577.10.1017/S1742758400000643Search in Google Scholar
31. Webb, R., Smith, F., Affeldt, H., Thimijan, R., Dudley, R., Webb, H. Crop Protect. 1985, 4, 381. https://doi.10.1016/0261-2194(85)90042-0.10.1016/0261-2194(85)90042-0Search in Google Scholar
32. Hall, D. G., Hentz, M. G. J. Econ. Entomol. 2010, 103, 541. https://doi.10.1603/ec09360.10.1603/EC09360Search in Google Scholar
33. Yee, W. L. J. Econ. Entomol. 2011, 104, 909. https://doi.10.1603/EC10327.10.1603/EC10327Search in Google Scholar
34. Garoushi, S., Vallittu, P. K., Lassila, L. V. J. Dent. Mater. 2007, 23, 1356. https://doi.10.1016/j.dental.2006.10.1016/j.dental.2006.11.017Search in Google Scholar
35. Nájera, J. J., Horn, A. B. Chem. Phys. 2009, 11, 483. https://doi.10.1039/B812182F.10.1039/B812182FSearch in Google Scholar
36. Rahma, A., Munir, M. M., Khairurrijal, M. M., Prasetyo, A., Suendo, V., Rachmawati, H. Biol. Pharm. Bull. 2016, 39, 163. https://doi.10.1248/bpb.b15-00391.10.1248/bpb.b15-00391Search in Google Scholar
37. Chiantore, O., Guaita, M., Lazari, M., Hadjichristidis, N., Pitsikalis, M. Polym. Degrad. Stabil. 1995, 49, 385. https://doi.10.1016/0141-3910(95)00119-7.10.1016/0141-3910(95)00119-7Search in Google Scholar
38. Cibulková, Z., Polovková, J., Luke, V., Klein, E. J. Therm. Anal. Calorim. 2006, 84, 709. https://doi.10.1007/s10973-005-7547-1.10.1007/s10973-005-7547-1Search in Google Scholar
39. Kadajji, V. G., Betageri, V. B. Polymers 2011, 3, 1972. https://doi.10.3390/polym3041972.10.3390/polym3041972Search in Google Scholar
40. Wang, Z., Zhang, Y., Jiang, F., Fang, H., Wang, Z. Polym. Chem. 2014, 5, 3379. https://doi.10.1039/C3PY01574B.10.1039/c3py01574bSearch in Google Scholar
41. Breuer, B., Fock, H. P. J. Chromatogr. Sci. 1987, 25, 302. https://doi.10.1093/chromsci/25.7.302.10.1093/chromsci/25.7.302Search in Google Scholar PubMed
42. Tucci, E. R. Ind. Eng. Chem. Prod. Res. Dev. 1966, 5, 161. https://doi.10.1093/chromsci/25.7.302.Search in Google Scholar
43. Du, K. K., Yang, I. P., Mou, Z. G., Hua, N. P., Jiang, L. J. Appl. Polym. Sci. 2006, 99, 23. https://doi.10.1021/i360018a014.10.1002/app.21886Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ijmr-2021-8358).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Corrosion behavior of hydroxyapatite coated AZ31 and AZ91 Mg alloys by electrostatic spray coating
- Radiation synthesis and characterization of polymeric wet adhesives for attracting and trapping insects
- Promoting the effect of cationic substitution on thermal stability and redox properties of new synthesized Keggin type lacunary polyoxometalates (L-POMs) Ni2.5PMo11 M(H2O)O39 (M = Co, Fe, Cu, Zn)
- Investigation of the influence of the energy conditions of pulsed plasma-chemical synthesis on the morphological and structural properties of copper-containing silica-based nanocomposites
- A computational material study of HoB6 and Co/MgO–HoB6: heavy rare-earth metal hexaborides
- Effects of alloying elements on the microstructure and mechanical properties of as-cast Cr12MoV cold-working die steel
- The effects of rotational and traverse speeds and SiC particles on the microstructure and mechanical properties of AA 5052 in friction stir welding
- Influence of hot extrusion on the microstructure and mechanical properties of Al2O3/7075 aluminum matrix composites
- Short Communication
- Fabrication of magnetic core–shell Fe nanowires by electrochemical deposition
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Corrosion behavior of hydroxyapatite coated AZ31 and AZ91 Mg alloys by electrostatic spray coating
- Radiation synthesis and characterization of polymeric wet adhesives for attracting and trapping insects
- Promoting the effect of cationic substitution on thermal stability and redox properties of new synthesized Keggin type lacunary polyoxometalates (L-POMs) Ni2.5PMo11 M(H2O)O39 (M = Co, Fe, Cu, Zn)
- Investigation of the influence of the energy conditions of pulsed plasma-chemical synthesis on the morphological and structural properties of copper-containing silica-based nanocomposites
- A computational material study of HoB6 and Co/MgO–HoB6: heavy rare-earth metal hexaborides
- Effects of alloying elements on the microstructure and mechanical properties of as-cast Cr12MoV cold-working die steel
- The effects of rotational and traverse speeds and SiC particles on the microstructure and mechanical properties of AA 5052 in friction stir welding
- Influence of hot extrusion on the microstructure and mechanical properties of Al2O3/7075 aluminum matrix composites
- Short Communication
- Fabrication of magnetic core–shell Fe nanowires by electrochemical deposition
- News
- DGM – Deutsche Gesellschaft für Materialkunde