Startseite A computational material study of HoB6 and Co/MgO–HoB6: heavy rare-earth metal hexaborides
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A computational material study of HoB6 and Co/MgO–HoB6: heavy rare-earth metal hexaborides

  • Mikail Aslan ORCID logo EMAIL logo
Veröffentlicht/Copyright: 19. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The superior physical and chemical properties of holmium hexaborides enable their use in high-tech industrial applications. It is vital to examine these structure types on the atomic scale to elucidate the details of their structure and improve their functional properties. For this reason, holmium hexaboride, cobalt–holmium hexaboride and magnesium oxide–holmium hexaboride crystal structures were investigated systematically employing ab initio material modeling, including the dispersion corrected density functional theory approach, using an interface to the PWscf code of Quantum Espresso and Vienna Ab initio Simulation Package software. The effects of cobalt (∼4 wt.%) and MgO (∼2.8 wt.%) doping on holmium hexaboride structures are discussed in terms of optical, magnetic, and electronic properties including the charge transform, scanning tunneling microscopy, density of states, and K-edge X-ray absorption spectra analyses. Scanning tunneling microscopy and K-edge X-ray absorption spectra analyses were conducted to enable correlation with future experiments. Results indicate that cobalt doping does not provide enough driving magnetic force to alter the magnetic properties of the HoB6. Furthermore, MgO addition leads to significant distortions in the structure of the HoB6. The properties of HoB6 were affected adversely, especially due to the distorsion of the octahedral boron unit.


Corresponding author: Mikail Aslan, Department of Metallurgical and Material Science Engineering, Gaziantep University, Üniversite Bulvarı 27310 Şehitkamil, Gaziantep, Turkey, E-mail:

  1. Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Arabei, B. G., Shtrom, E. N., Lapitskii, Y. A. Characteristics of the manufacturing technology of dense parts from, and the mechanical properties of, some hexaborides of the rare-earth metals. Powder Metall. Met. Ceram. 1965, 3, 406. https://doi.org/10.1007/bf00774242.Suche in Google Scholar

2. Samsonov, G., Paderno, Y. B., Fomenko, V. Powder Metall. Met Ceram. 1963, 2, 449.10.1007/BF00774188Suche in Google Scholar

3. Takahashi, K., Kunii, S. Single crystal growth and properties of incongruently melting TbB6, DyB6, HoB6, and YB6. J. Solid State Chem. 1997, 133, 198. https://doi.org/10.1006/jssc.1997.7427.Suche in Google Scholar

4. Wei, D., Xie, J., Tong, D. G. Amorphous europium hexaboride: a potential room temperature formaldehyde sensing material. ACS Appl. Mater. Interfaces 2018, 10, 35681. https://doi.org/10.1021/acsami.8b13234.Suche in Google Scholar PubMed

5. Wang, X., Deng, J., Lei, L., Qi, K., Cao, G., Zha, L. Enhanced field emission performance of lanthanum hexaboride coated on graphene film. Mater. Res. Express 2018, 5, 126403. https://doi.org/10.1088/2053-1591/aae0c6.Suche in Google Scholar

6. Qi, X., Bao, L., Chao, L., Tegus, O. Experimental and theoretical investigation on tunable optical property of nanocrystalline Ca-doped CeB6. Phys. B: Condens. Matter 2018, 530, 312. https://doi.org/10.1016/j.physb.2017.12.003.Suche in Google Scholar

7. Wang, Y., Zhang, J., Yang, X., Zhu, Z., Zhao, J., Xu, B., Li, Z. High-quality LaxCeyPr1-x-yB6 single crystal with excellent thermionic emission properties grown by optical floating zone melting method. J. Alloys Compd. 2018, 769, 706. https://doi.org/10.1016/j.jallcom.2018.08.046.Suche in Google Scholar

8. Liu, H., Zhang, X., Xiao, Y., Zhang, J. The electronic structure and thermionic emission property of single crystal SmB 6. Vacuum 2017, 145, 295. https://doi.org/10.1016/j.vacuum.2017.09.015.Suche in Google Scholar

9. Sun, Z., Maldonado, A., Paz, W. S., Inosov, D. S., Schnyder, A. P., Palacios, J. J., Shitsevalova, N. Y., Filipov, V. B., Wahl, P. Observation of a well-defined hybridization gap and in-gap states on the SmB6 (001) surface. Phys. Rev. B 2018, 97, 235107. https://doi.org/10.1103/PhysRevB.97.235107.Suche in Google Scholar

10. Binder, I. Structure and properties of rare-earth and yttrium hard metals. J. Am. Ceram. Soc. 1960, 43, 287. https://doi.org/10.1111/j.1151-2916.1960.tb13655.x.Suche in Google Scholar

11. Wei, W., Lihong, B., Yingjie, L., Luomeng, C., Tegus, O. Solid-state reaction synthesis and characterization of PrB6 nanocrystals. J. Cryst. Growth 2015, 415, 123. https://doi.org/10.1016/j.jcrysgro.2014.12.030.Suche in Google Scholar

12. Yilmaz, D., Savaci, U., Koç, N., Turan, S. Carbothermic reduction synthesis of calcium hexaboride using PVA-calcium hexaborate mixed gels. Ceram. Int. 2018, 44, 2976. https://doi.org/10.1016/j.ceramint.2017.11.050.Suche in Google Scholar

13. Eo, Y. S., Rakoski, A., Sinha, S., Mihaliov, D., Fuhrman, W. T., Saha, S. R., Rosa, P. F. S., Fisk, Z., Hatnean, M. C., Balakrishnan, G., Chamorro, J. R., Phelan, W. A., Koohpayeh, S. M., McQueen, T. M., Kang, B., Song, M.-s., Cho, B., Fuhrer, M. S., Paglione, J., Kurdak, Ç. Bulk transport paths through defects in floating zone and Al flux grown SmB6. Phys. Rev. Mater. 2021, 5, 055001. https://doi.org/10.1103/physrevmaterials.5.055001.Suche in Google Scholar

14. Amalajyothi, K., Berchmans, L. J., Angappan, S., Visuvasam, A. Electrosynthesis of cerium hexaboride by the molten salt technique. J. Cryst. Growth 2008, 310, 3376. https://doi.org/10.1016/j.jcrysgro.2008.04.026.Suche in Google Scholar

15. Guélou, G., Martirossyan, M., Ogata, K., Ohkubo, I., Kakefuda, Y., Kawamoto, N., Kitagawa, Y., Ueda, J., Tanabe, S., Maeda, K., Nakamura, K., Aizawa, T., Mori, T. Rapid deposition and thermoelectric properties of ytterbium boride thin films using hybrid physical chemical vapor deposition. Materialia 2018, 1, 244. https://doi.org/10.1016/j.mtla.2018.06.003.Suche in Google Scholar

16. Zhou, S., Zhang, J., Liu, D., Lin, Z., Huang, Q., Bao, L., Ma, R., Wei, Y. Synthesis and properties of nanostructured dense LaB6 cathodes by arc plasma and reactive spark plasma sintering. Acta Mater. 2010, 58, 4978. https://doi.org/10.1016/j.actamat.2010.05.031.Suche in Google Scholar

17. Ağaoğulları, D., Balcı, Ö., Öveçoğlu, M. L., Duman, İ. Preparation of LaB6 powders via calciothermic reduction using mechanochemistry and acid leaching. KONA Powder Part. J. 2016, 33, 203. https://doi.org/10.14356/kona.2016001.Suche in Google Scholar

18. Tan, Q., Yin, Y., Fan, Z., Zhang, J., Liu, Y., Zhang, M.-X. Uncovering the roles of LaB6-nanoparticle inoculant in the AlSi10Mg alloy fabricated via selective laser melting. Mater. Sci. Eng., A 2021, 800, 140365. https://doi.org/10.1016/j.msea.2020.140365.Suche in Google Scholar

19. Fang, Y., Jia, J., Yang, J., Zheng, J., Yi, C. Facile preparation of holmium(III)-doped carbon nanodots for fluorescence/magnetic resonance dual-modal bioimaging. Chin. Chem. Lett. 2018, 29, 1277. https://doi.org/10.1016/j.cclet.2017.10.023.Suche in Google Scholar

20. Li, Q., Zhao, Y., Fan, Q., Han, W. Synthesis of one-dimensional rare earth hexaborides nanostructures and their optical absorption properties. Ceram. Int. 2017, 43, 10715. https://doi.org/10.1016/j.ceramint.2017.05.035.Suche in Google Scholar

21. Bao, L., Ning, J., Narengerile, Liu, Z. Mechanism for transmittance light tunable property of nanocrystalline Eu-doped SmB6: experimental and first-principles study. J. Rare Earths 2021, 39, 1100. https://doi.org/10.1016/j.jre.2020.09.004.Suche in Google Scholar

22. Berchmans, L. J., Visuvasam, A., Angappan, S., Subramanian, C., Suri, A. K. Electrosynthesis of samarium hexaboride using tetra borate melt. Ionics 2010, 16, 833. https://doi.org/10.1007/s11581-010-0469-3.Suche in Google Scholar

23. Popov, P. A., Novikov, V. V., Sidorov, A. A., Maksimenko, E. V. Thermal conductivity of LaB6 and SmB6 in the range 6-300 K. Inorg. Mater. 2007, 43, 1187. https://doi.org/10.1134/S0020168507110064.Suche in Google Scholar

24. Swanson, L. W., McNeely, D. R. Work functions of the (001) face of the hexaborides of Ba, La, Ce and Sm. Surf. Sci. 1979, 83, 11. https://doi.org/10.1016/0039-6028(79)90477-1.Suche in Google Scholar

25. Niihara, K. The preparation and nonstoichiometry of samarium hexaboride. Bull. Chem. Soc. Jpn 1971, 44, 963. https://doi.org/10.1246/bcsj.44.963.Suche in Google Scholar

26. Yamaguchi, T., Akatsu, M., Nakano, Y., Washizawa, T., Nemoto, Y., Goto, T., Dönni, A., Nakamura, S., Kunii, S. Physica B 2003, 329-333, 622. https://doi.org/10.1016/S0921-4526(02)02524-3.Suche in Google Scholar

27. Goto, T., Nemoto, Y., Nakano, Y., Nakamura, S., Kajitani, T., Kunii, S. Quadrupolar effect of HoB6 and DyB6. Phys. B: Condens. Matter 2000, 281-282, 586. https://doi.org/10.1016/S0921-4526(99)01129-1.Suche in Google Scholar

28. Mori, Y., Shino, N., Imada, S., Suga, S., Nanba, T., Tomikawa, M., Kunii, S. Photoemission and BIS of RB6 (R = rare earth element). Phys. B: Condens. Matter 1993, 186-188, 66. https://doi.org/10.1016/0921-4526(93)90496-S.Suche in Google Scholar

29. Pan, Y., Qian, L., Wang, X., Peng, J., Lu, W. Hybrid phosphate-alumina iron-based core-shell soft magnetic composites fabricated by sol-gel method and ball milling method. Metals 2020, 10, 257. https://doi.org/10.3390/met10020257.Suche in Google Scholar

30. King, N., Boltersdorf, J., Maggard, P., Wong-Ng, W. Polymorphism and structural distortions of mixed-metal oxide photocatalysts constructed with α-U3O8 types of layers. Crystals 2017, 7, 145. https://doi.org/10.3390/cryst7050145.Suche in Google Scholar

31. Tekoğlu, E., İmer, C., Ağaoğulları, D., Lütfi Öveçoğlu, M. Synthesis of LaB6-Al2O3 nanocomposite powders via ball milling-assisted annealing. J. Mater. Sci. 2018, 53, 13538. https://doi.org/10.1007/s10853-018-2454-6.Suche in Google Scholar

32. Bao, L., Qi, X., Bao, T., Tegus, O. Structural, magnetic, and thermionic emission properties of multi-functional La1-xCaxB6 hexaboride. J. Alloys Compd. 2018, 731, 332. https://doi.org/10.1016/j.jallcom.2017.10.065.Suche in Google Scholar

33. Deng, J., Zeng, B., Wang, Y., Wang, X., Lin, Z., Qi, K., Cao, G. Fabrication and characteristics of LaB 6 -doped MgO protective layer for plasma display panels. Mater. Lett. 2014, 134, 51. https://doi.org/10.1016/j.matlet.2014.07.062.Suche in Google Scholar

34. Raja, A., Adhikary, T., Al-Omari, I. A., Das, G. P., Ghosh, S., Satapathy, D. K., Oraon, A., Shield, J. E., Aich, S. Rapidly solidified Sm-Co-Hf-B magnetic Nano-composites: experimental and DFT studies. J. Magn. Magn Mater. 2020, 504, 166645. https://doi.org/10.1016/j.jmmm.2020.166645.Suche in Google Scholar

35. Ullah, S., Denis, P. A., Sato, F. Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: a DFT study. Appl. Mater. Today 2017, 9, 333. https://doi.org/10.1016/j.apmt.2017.08.013.Suche in Google Scholar

36. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM (J. Occup. Med.) 2013, 65, 1501. https://doi.org/10.1007/s11837-013-0755-4.Suche in Google Scholar

37. Capdevila-Cortada, M., Łodziana, Z., López, N. Performance of DFT+U approaches in the study of catalytic materials. ACS Catal. 2016, 6, 8370. https://doi.org/10.1021/acscatal.6b01907.Suche in Google Scholar

38. Ikehata, H., Nagasako, N., Kuramoto, S., Saito, T. Designing new structural materials using density functional theory: the example of gum MetalTM. MRS Bull. 2006, 31, 688. https://doi.org/10.1557/mrs2006.178.Suche in Google Scholar

39. Xi, J., Jung, H. S., Xu, Y., Xiao, F., Bae, J. W., Wang, S. Synthesis strategies, catalytic applications, and performance regulation of single‐atom catalysts. Adv. Funct. Mater. 2021, 31, 2008318. https://doi.org/10.1002/adfm.202008318.Suche in Google Scholar

40. Joseph, I., Wan, K., Hussain, S., Guo, L., Xie, L., Shi, X. Interlayer angle-dependent electronic structure and optoelectronic properties of BP-MoS2 heterostructure: a first principle study. Comput. Mater. Sci. 2021, 186, 110056. https://doi.org/10.1016/j.commatsci.2020.110056.10.1016/j.commatsci.2020.110056Suche in Google Scholar

41. Aslan, M. Bimetallic AuM (M = Ni and Ag) clusters/nanoparticles and their extended (111) surfaces for NO2 adsorption: a computational material study. Mater. Today Commun. 2021, 26, 101821. https://doi.org/10.1016/j.mtcomm.2020.101821.Suche in Google Scholar

42. Aslan, M., Eskalen, H. A study of carbon nanodots (carbon quantum dots) synthesized from tangerine juice using one-step hydrothermal method. Fullerenes, Nanotub. Carbon Nanostruct. 2021, 29, 1026. https://doi.org/10.1080/1536383X.2021.1926452.Suche in Google Scholar

43. Eskalen, H., Aslan, M., Yaykaşlı, H., Gögebakan, M. Synthesis and characterization of Co-B-Fe-Ti nanosized alloyed powders. Int. J. Mater. Res. 2021, 112, 35. https://doi.org/10.1515/ijmr-2020-7704.Suche in Google Scholar

44. Aslan, M., Ergül, M., Abdulaziz, K., Kurt, H. İ., Yılmaz, N. F. El-Cezerî J. Sci. Eng. 2020, 7, 1131. https://doi.org/10.31202/ecjse.742887.Suche in Google Scholar

45. Hofmann, D., Entrialgo-Castaño, M., Kratz, K., Lendlein, A. Knowledge-based approach towards hydrolytic degradation of polymer-based biomaterials. Adv. Mater. 2009, 21, 3237. https://doi.org/10.1002/adma.200802213.Suche in Google Scholar PubMed

46. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dal Corso, I. A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., Wentzcovitch, R. M. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502. https://doi.org/10.1088/0953-8984/21/39/395502.Suche in Google Scholar PubMed

47. Mattsson, A. E., Schultz, P. A., Desjarlais, M. P., Mattsson, T. R., Leung, K. Designing meaningful density functional theory calculations in materials science-a primer. Model. Simulat. Mater. Sci. Eng. 2004, 13, R1. https://doi.org/10.1088/0965-0393/13/1/R01.Suche in Google Scholar

48. Lee, J. G. Computational Materials Science: An Introduction; CRC Press: Boca Raton, 2016.10.1201/9781315368429Suche in Google Scholar

49. The Materials Project. Materials Data on HoB6 by Materials Project. United States. https://www.osti.gov/servlets/purl/1276287. 2020.Suche in Google Scholar

50. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. https://doi.org/10.1063/1.3382344.Suche in Google Scholar PubMed

51. Heard, C. J., Heiles, S., Vajda, S., Johnston, R. L. PdnAg(4−n) and PdnPt(4−n) clusters on MgO (100): a density functional surface genetic algorithm investigation. Nanoscale 2014, 6, 11777. https://doi.org/10.1039/C4NR03363A.Suche in Google Scholar PubMed

52. Hafner, J. Comput. Phys. Commun. 2007, 177, 6. https://doi.org/10.1016/j.cpc.2007.02.045.Suche in Google Scholar

53. Hafner, J., Wolverton, C., Ceder, G. Toward computational materials design: the impact of density functional theory on materials research. MRS Bull. 2006, 31, 659. https://doi.org/10.1557/mrs2006.174.Suche in Google Scholar

54. Tersoff, J., Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805. https://doi.org/10.1103/PhysRevB.31.805.Suche in Google Scholar PubMed

55. Vanpoucke, D. E. P., Brocks, G. Formation of Pt-induced Ge atomic nanowires on Pt/Ge(001): a density functional theory study. Phys. Rev. B 2008, 77, 241308. https://doi.org/10.1103/PhysRevB.77.241308.Suche in Google Scholar

56. https://juser.fz-juelich.de/record/54009/files/FZJ-2014-02225.pdf.Suche in Google Scholar

57. Gabani, S., Flachbart, K., Siemensmeyer, K., Mori, T. Magnetism and superconductivity of rare earth borides. J. Alloys Compd. 2020, 821, 153201. https://doi.org/10.1016/j.jallcom.2019.153201.Suche in Google Scholar

Received: 2021-02-10
Accepted: 2021-10-12
Published Online: 2022-01-19
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8240/html
Button zum nach oben scrollen