Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description
Abstract
The CALPHAD (CAlculation of PHAse Diagrams) technique is used in the critical remodeling of the Cd–Ce system. On the basis of new experimental data in the literature, the excess Gibbs energies of the solution phase expression (liquid, bcc, fcc, and hcp_A3) are described using the Redlich–Kister equation. Four compounds (Cd3Ce, Cd6Ce, Cd11Ce, and Cd17Ce2) are treated as stochiometric compounds. Two intermetallic compounds (Cd2Ce and Cd58Ce13), which exhibit a little homogeneity range, are treated as a two-sublattice model. Two thermodynamic models are used for the CdCe and bcc. Model I is to model the compound CdCe and bcc-Ce separately. Model II is to use the formula (Cd, Ce)0.5(Cd, Ce)0.5(Va)3 to describe the compound CdCe with a CsCl-type structure (B2) and cope with the disorder–order transition from bcc-A2 to bcc-B2. The present work shows that four eutectic reactions, three peritectic reactions, two eutectoid reactions, one peritectoid transformation and three congruent reactions are observed, and the stoichiometric compound Cd17Ce2 is only stable from 804 to 882 °C in the Cd–Ce system.
-
Research ethics: Not applicable.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: Authors are grateful to the National Natural Science Foundation of China (No. 51961014), and the Science Foundation of Ganzhou City (No. [2018] 50; [2020] 60), and the Innovative Talent Programof Ganzhou City (No. [2019] 60), and Science and Technology Research Project of Jiangxi Provincial Department of Education (No. GJJ191346).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Olander, D. J. Nucl. Mater. 2009, 389, 1. https://doi.org/10.1016/j.jnucmat.2009.01.297.Search in Google Scholar
2. Conocar, O., Douyere, N., Glatz, J., Lacquement, J., Malmbecke, R. Nucl. Sci. Eng. 2006, 153, 253. https://doi.org/10.13182/NSE06-A2611.Search in Google Scholar
3. Kurata, M., Sakamura, Y., Hijikata, T., Kinoshita, K. J. Nucl. Mater. 1995, 227, 110. https://doi.org/10.1016/0022-3115(95)00146-8.Search in Google Scholar
4. Okamoto, H. J. Phase Equilibria. 1999, 20, 636. https://doi.org/10.1361/105497199770335181.Search in Google Scholar
5. Massalski, T. B., Ed. Binary Alloy Phase Diagrams; ASM International: Materials Park, OH, 1990, 2nd ed.Search in Google Scholar
6. Gschneidner, K. A., Calderwood, F. W. Bull. Alloys Phase Diagrams 1988, 9, 16. https://doi.org/10.1007/BF02877449.Search in Google Scholar
7. Kurata, M., Sakamura, Y. J. Phase Equilibria. 2001, 22, 232. https://doi.org/10.1361/105497101770338707.Search in Google Scholar
8. Skołyszewska-Kühberger, B., Reichmann, T. L., Ganesan, R., Ipser, H. Calphad 2014, 44, 14. https://doi.org/10.1016/j.calphad.2013.07.005.Search in Google Scholar PubMed PubMed Central
9. Skołyszewska-Kühberger, B., Reichmann, T. L., Marker, M. C. J., Effenberger, H. S., Ipser, H. J. Phase Equilibria Diffus. 2016, 37, 186. https://doi.org/10.1007/s11669-015-0441-z.Search in Google Scholar
10. Reichmann, T. L., Richter, K. W., Delsante, S., Borzone, G., Ipser, H. Calphad 2014, 47, 56. https://doi.org/10.1016/j.calphad.2014.06.005.Search in Google Scholar PubMed PubMed Central
11. Liu, J., Li, F., Guo, C., Li, Q., Liu, J., Zhang, X., Xiao, J. J. Phase Equilibria Diffus. 2019, 40, 732. https://doi.org/10.1007/s11669-019-00759-3.Search in Google Scholar
12. Reichmann, T. L., Ipser, H. Metall. Mater. Trans. A 2014, 45, 1171. https://doi.org/10.1007/s11661-013-2065-4.Search in Google Scholar
13. Reichmann, T. L., Ganesan, R., Ipser, H. J. Alloys Compd. 2014, 610, 676. https://doi.org/10.1016/j.jallcom.2014.05.062.Search in Google Scholar PubMed PubMed Central
14. Iandelli, A., Ferro, R. Gazz. Chim. Ital. 1954, 84, 463.Search in Google Scholar
15. Gschneidner, K. A. Rare Earth Alloys; D. Van Nostrand Company Ltd: London, 1961.Search in Google Scholar
16. Johnson, I., Anderson, K. E., Blomquist, R. A. Trans. Am. Soc. Metall. 1966, 59, 352.Search in Google Scholar
17. Canepa, F., Costa, G. A., Franceschi, E. A. Lanthan. Actin. Res. 1985, 1, 41.Search in Google Scholar
18. Bayanov, A., Serebrennikov, V. V. Zh. Fiz. Khim. 1965, 39, 717.Search in Google Scholar
19. Johnson, I., Yonco, R. M. Metall. Trans. 1970, 1, 905. https://doi.org/10.1007/BF02811772.Search in Google Scholar
20. Colinet, C., Pasturel, A. Thermodynamic properties of metallic systems. In Handbook on the Physics and Chemistry of Rare Earths—Lanthanides/Actinides: Physics-II; Gschneidner K. A. Jr., Eyring L., Lander G. H., Choppin G. R., Eds. Elsevier Science B.V., Amsterdam, 1994; pp. 479–631.10.1016/S0168-1273(05)80063-7Search in Google Scholar
21. Shibata, H., Hayashi, H., Akabori, M., Arai, Y., Kurata, M. J. Phys. Chem. Solids 2014, 75, 972. https://doi.org/10.1016/j.jpcs.2014.04.004.Search in Google Scholar
22. Castrillejo, Y., Bermejo, M. R., Arocas, P. D., Martínez, A. M., Barrado, E. J. Electroanal. Chem. 2005, 579, 343.10.1016/j.jelechem.2005.03.001Search in Google Scholar
23. Castrillejo, Y., Bermejo, R., Martínez, A. M., Barrado, E., Arocas, P. D. J. Nucl. Mater. 2007, 360, 32. https://doi.org/10.1016/j.jnucmat.2006.08.011.Search in Google Scholar
24. Reichmann, T. L., Richter, K. W., Delsante, S., Borzone, G., Ipser, H. Calphad 2014, 47, 56. https://doi.org/10.1016/j.calphad.2014.06.005.Search in Google Scholar PubMed PubMed Central
25. Reichmann, T. L., Effenberger, H. S., Ipser, H. PLoS One 2014, 9, 1. https://doi.org/10.1371/journal.pone.0094025.Search in Google Scholar PubMed PubMed Central
26. Jain, A., Ong, S. P. APL Mater. 2013, 1, 11002. https://doi.org/10.17188/1207032.Search in Google Scholar
27. Kirklin, S., Saal, J. E., Meredig, B., Thompson, A., Doak, J. W., Aykol, M., Rühl, S., Wolverton, C. npj Comput. Mater. 2015, 1, 15010. https://doi.org/10.1038/npjcompumats.2015.10.Search in Google Scholar
28. Dinsdale, A. T. Calphad 1991, 15, 317. https://doi.org/10.1016/0364-5916(91)90030-N.Search in Google Scholar
29. Redlich, O., Kister, A. T. Ind. Eng. Chem. 1948, 40, 345. https://doi.org/10.1021/ie50458a036.Search in Google Scholar
30. Ansara, I., Dupin, N., Lukas, H. L., Sundman, B. J. Alloys Compd. 1997, 247, 20. https://doi.org/10.1016/S0925-8388(96)02652-7.Search in Google Scholar
31. Sundman, B., Jansson, B., Andersson, J.-O. Calphad 1985, 9, 153. https://doi.org/10.1016/0364-5916(85)90021-5.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Nanocrystalline PbS thin film produced by alkaline chemical bath deposition: effect of inhibitor levels and temperature on the physicochemical properties
- Effect of laser power on microstructure and tribological behavior of laser clad NiCr coating
- Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni
- Factors dictating the extent of low elongation in high sulfur-containing bainitic steels
- Effect of process parameters on mechanical properties and wettability of polylactic acid by fused filament fabrication process
- Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description
- Experimental study of the phase relations of the Fe–Pt–Ho ternary system at 500 °C
- Ultraviolet-B radiation from Gd (III) doped hardystonite
- Photoluminescence features of trivalent holmium doped Ca2La8(SiO4)6O2 phosphors
- Thermal stability of Al3BC3 powders under a nitrogen atmosphere
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Nanocrystalline PbS thin film produced by alkaline chemical bath deposition: effect of inhibitor levels and temperature on the physicochemical properties
- Effect of laser power on microstructure and tribological behavior of laser clad NiCr coating
- Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni
- Factors dictating the extent of low elongation in high sulfur-containing bainitic steels
- Effect of process parameters on mechanical properties and wettability of polylactic acid by fused filament fabrication process
- Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description
- Experimental study of the phase relations of the Fe–Pt–Ho ternary system at 500 °C
- Ultraviolet-B radiation from Gd (III) doped hardystonite
- Photoluminescence features of trivalent holmium doped Ca2La8(SiO4)6O2 phosphors
- Thermal stability of Al3BC3 powders under a nitrogen atmosphere
- News
- DGM – Deutsche Gesellschaft für Materialkunde