Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
Abstract
It is known that sintering of powders of zinc oxide (ZnO) with small additions of iron oxide results in a ceramic with grains exhibiting a characteristic inversion domain micro-structure with planar inversion domain boundaries (IDBs) on two different habit planes. This study concentrates on a quantitative analysis, by a combination of different transmission electron microscopy methods, of those IDBs that are parallel to {0001} basal planes of the wurtzite structure of ZnO. Electron diffraction and dark-field imaging prove the nature of the inversion. High-resolution annular dark field scanning transmission electron microscopy allows measurement of the rigid body displacements across these IDBs and of the local lattice contraction related to the octahedral interstices that form the boundaries. Energy-selected imaging, electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy have been combined to determine the chemical composition of the IDBs quantitatively. It is thus shown unambiguously that every such fault consists of precisely one basal plane of octahedral interstices that are completely occupied by Fe3+ ions and that these FeO6 octahedra are themselves contracted along the <0001> direction. A local charge balance model explains the observations.
Dedicated to Professor Dr. Knut Urban on the occasion of his 65th birthday
Funding statement: Part of this research has been supported by the Deutsche Forschungsgemeinschaft through its “Schwerpunktprogramm 1056: Strukturgradienten in Kristallen”
References
[1] T.K. Gupta: J. Am. Ceram. Soc. 73 (1990) 1817.10.1111/j.1151-2916.1990.tb05232.xSearch in Google Scholar
[2] D.R. Clarke: J. Am. Ceram. Soc. 82 (1999) 485.10.1111/j.1151-2916.1999.tb01793.xSearch in Google Scholar
[3] D.G. Baik, S.M. Cho: Thin Solid Films 354 (1999) 227.10.1016/S0040-6090(99)00559-3Search in Google Scholar
[4] G. Heiland: Sensors and Actuators 2 (1982) 343.10.1016/0250-6874(81)80055-8Search in Google Scholar
[5] A. Ghosh, S. Basu: Mater. Chem. Phys. 27 (1991) 45.10.1016/0254-0584(91)90159-RSearch in Google Scholar
[6] Z.C. Jin, I. Hamberg, C.G. Granqvist: Appl. Phys. Lett. 51 (1987) 149.10.1063/1.99008Search in Google Scholar
[7] C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, H. Shen: J Appl. Phys. 85 (1999) 2595.10.1063/1.369577Search in Google Scholar
[8] T. Dietl, in: T.S. Moss, S. Mahajan (Eds.), Handbook on Semiconductors, Vol. 3b, North-Holland, Amsterdam (1994) 1251.Search in Google Scholar
[9] M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey: Phys. Rev. Lett. 93 (2004) 177206.10.1103/PhysRevLett.93.177206Search in Google Scholar
[10] A. Recnik, N. Daneu, T. Walther, W. Mader: J. Am. Ceram. Soc. 84 (2001) 2657.10.1111/j.1151-2916.2001.tb01068.xSearch in Google Scholar
[11] M. Nakamura, N. Kimizuka, T. Mohri: J. Solid State Chem. 86 (1990) 16.10.1016/0022-4596(90)90110-JSearch in Google Scholar
[12] C.F. Li, Y. Bando, M. Nakamura, M. Onoda, N. Kimizuka: J. Solid State Chem. 139 (1998) 347.10.1006/jssc.1998.7856Search in Google Scholar
[13] T. Hörlin, G. Svensson, E. Olsson: J. Mater. Chem. 8 (1998) 2465.10.1039/a805291cSearch in Google Scholar
[14] Y. Yan, S.J. Pennycook, J. Dai, R.P.H. Chang, A.Wang, T.J. Marks: Appl. Phys. Lett. 73 (1998) 2585.10.1063/1.122513Search in Google Scholar
[15] F. Wolf, B. Freitag, W. Mader: Micron (2006) accepted.Search in Google Scholar
[16] L. Reimer, I. Fromm, P. Hirsch, U. Plate, R. Rennekamp: Ultramicroscopy 46 (1992) 335.10.1016/0304-3991(92)90023-DSearch in Google Scholar
[17] K. Kimoto, T. Sekiguchi, T. Aoyama: J. Electr. Microsc. 46 (1997) 369.10.1093/oxfordjournals.jmicro.a023532Search in Google Scholar
[18] T. Walther, W. Mader: Inst. Phys. Conf. Ser. 164 (1999) 121.Search in Google Scholar
[19] Z.L. Wang, J. Bentley, N.D. Evans: Micron 31 (2000) 355.10.1016/S0968-4328(99)00114-6Search in Google Scholar
[20] T. Walther, H. Kalisch, K. Heime, M. Heuken, I. Marko, G. P. Yablonskii: Phys. Stat. Sol. (a) 180 (2000) 351.10.1002/1521-396X(200007)180:1<351::AID-PSSA351>3.0.CO;2-2Search in Google Scholar
[21] T. Walther: Ultramicroscopy 96 (2003) 401.10.1016/S0304-3991(03)00104-9Search in Google Scholar
[22] U. Golla-Schindler, G. Benner, A. Putnis: Ultramicroscopy 96 (2003) 573.10.1016/S0304-3991(03)00118-9Search in Google Scholar
[23] P.E. Batson, K.L. Kavanagh, J.M. Woodall, J.W. Mayer: Phys. Rev. Lett. 57 (1986) 2729.10.1103/PhysRevLett.57.2729Search in Google Scholar
[24] J.A. Hunt, D.B. Williams: Ultramicroscopy 38 (1991) 47.10.1016/0304-3991(91)90108-ISearch in Google Scholar
[25] T. Walther: Z. Metallkd. 96 (2005) 429.10.3139/146.018131Search in Google Scholar
[26] F. Wolf, W. Mader: Optik 10, Suppl. 8 (1999) 66.Search in Google Scholar
[27] J. Albertsson, S.C. Abrahams, A. Kvick: Acta Cryst. B 45 (1989) 34.10.1107/S0108768188010109Search in Google Scholar
[28] M.J. Hytch, J.L Putaux, J.M. Penisson: Nature 423 (2003) 270.10.1038/nature01638Search in Google Scholar
[29] R.C. Ecob, W.M. Stobbs: J. Microsc. 129 (1983) 275.10.1111/j.1365-2818.1983.tb04184.xSearch in Google Scholar
[30] G.J. Wood, W.M. Stobbs, D.J. Smith: Philos. Mag. A 50 (1984) 375.10.1080/01418618408244234Search in Google Scholar
[31] C.B. Boothroyd, A.P. Crawley, W.M. Stobbs: Philos. Mag. A 54 (1986) 663.10.1080/01418618608244025Search in Google Scholar
[32] T. Walther, C.J. Humphreys: Inst. Phys. Conf. Ser. 147 (1995) 103.Search in Google Scholar
[33] T. Walther, C.J. Humphreys: J. Crystal Growth 197 (1999) 113.10.1016/S0022-0248(98)00930-0Search in Google Scholar
[34] N. Hilbrandt, M. Martin: Ber. Bunsen-Gesellschaft Phys. Chem. Chem. Phys. 102 (1998) 1747.10.1002/bbpc.19981021204Search in Google Scholar
[35] P.M. Woodward, D.E. Cox, E. Moshopoulou, A.W. Sleight, S. Morimoto: Phys. Rev. B 62 (2000) 844.10.1103/PhysRevB.62.844Search in Google Scholar
[36] M. Boiocchi, F. Caucia, M. Merli, D. Prella, L. Ungaretti: Europ. J. Mineral. 13 (2001) 871.10.1127/0935-1221/2001/0013/0871Search in Google Scholar
[37] R.F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed., Plenum, New York (1996) 304.10.1007/978-1-4757-5099-7Search in Google Scholar
[38] P. Rez: Ultramicrosopy 9 (1982) 283.10.1016/0304-3991(82)90213-3Search in Google Scholar
[39] T. Walther: J. Microsc. 215 (2004) 191.10.1111/j.0022-2720.2004.01359.xSearch in Google Scholar PubMed
[40] T.Walther, N. Daneu, A. Recnik: Interface Science 12 (2004) 267.10.1023/B:INTS.0000028656.12913.8aSearch in Google Scholar
[41] G. Cliff, G.W. Lorimer: J. Microsc. 103 (1975) 203.10.1111/j.1365-2818.1975.tb03895.xSearch in Google Scholar
[42] T. Walther, A. Recnik, N. Daneu: Microchim. Acta (2006) in press.Search in Google Scholar
© 2006 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Professor Dr. Knut Urban 65 Years
- Basic
- Ordering processes and atomic defects in FeCo
- Atomic resolution electron tomography: a dream?
- Electron tomography of microelectronic device interconnects
- Aberration correction in electron microscopy
- Off-axis electron holography: Materials analysis at atomic resolution
- Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
- Prospects of the multislice method for CBED pattern calculation
- Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
- Quantitative assessment of nanoparticle size distributions from HRTEM images
- Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
- Structural domains in antiferromagnetic LaFeO3 thin films
- Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
- Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
- Dislocation imaging in fcc colloidal single crystals
- Applied
- Omega phase transformation – morphologies and mechanisms
- Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
- Wetting of aluminium-based complex metallic alloys
- Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
- Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
- On the formation of Si nanowires by molecular beam epitaxy
- Self-induced oscillations in Si and other semiconductors
- Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
- An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
- Radiation damage during HRTEM studies in pure Al and Al alloys
- Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
- Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
- Microstructure and properties of surface-treated Timetal 834
- Notifications
- Personal
- Conferences
Articles in the same Issue
- Frontmatter
- Editorial
- Professor Dr. Knut Urban 65 Years
- Basic
- Ordering processes and atomic defects in FeCo
- Atomic resolution electron tomography: a dream?
- Electron tomography of microelectronic device interconnects
- Aberration correction in electron microscopy
- Off-axis electron holography: Materials analysis at atomic resolution
- Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
- Prospects of the multislice method for CBED pattern calculation
- Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
- Quantitative assessment of nanoparticle size distributions from HRTEM images
- Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
- Structural domains in antiferromagnetic LaFeO3 thin films
- Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
- Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
- Dislocation imaging in fcc colloidal single crystals
- Applied
- Omega phase transformation – morphologies and mechanisms
- Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
- Wetting of aluminium-based complex metallic alloys
- Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
- Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
- On the formation of Si nanowires by molecular beam epitaxy
- Self-induced oscillations in Si and other semiconductors
- Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
- An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
- Radiation damage during HRTEM studies in pure Al and Al alloys
- Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
- Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
- Microstructure and properties of surface-treated Timetal 834
- Notifications
- Personal
- Conferences