Home Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
Article
Licensed
Unlicensed Requires Authentication

Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide

  • Thomas Walther EMAIL logo , Frank Wolf , Aleksander Recnik and Werner Mader
Published/Copyright: February 12, 2022
Become an author with De Gruyter Brill

Abstract

It is known that sintering of powders of zinc oxide (ZnO) with small additions of iron oxide results in a ceramic with grains exhibiting a characteristic inversion domain micro-structure with planar inversion domain boundaries (IDBs) on two different habit planes. This study concentrates on a quantitative analysis, by a combination of different transmission electron microscopy methods, of those IDBs that are parallel to {0001} basal planes of the wurtzite structure of ZnO. Electron diffraction and dark-field imaging prove the nature of the inversion. High-resolution annular dark field scanning transmission electron microscopy allows measurement of the rigid body displacements across these IDBs and of the local lattice contraction related to the octahedral interstices that form the boundaries. Energy-selected imaging, electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy have been combined to determine the chemical composition of the IDBs quantitatively. It is thus shown unambiguously that every such fault consists of precisely one basal plane of octahedral interstices that are completely occupied by Fe3+ ions and that these FeO6 octahedra are themselves contracted along the <0001> direction. A local charge balance model explains the observations.


Dedicated to Professor Dr. Knut Urban on the occasion of his 65th birthday



Dr. Thomas Walther Center of Advanced European Studies and Research (caesar), Electron Microscopy, Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany Tel.: +49 228 9656 198 Fax: +49 228 9656 116

Funding statement: Part of this research has been supported by the Deutsche Forschungsgemeinschaft through its “Schwerpunktprogramm 1056: Strukturgradienten in Kristallen”

References

[1] T.K. Gupta: J. Am. Ceram. Soc. 73 (1990) 1817.10.1111/j.1151-2916.1990.tb05232.xSearch in Google Scholar

[2] D.R. Clarke: J. Am. Ceram. Soc. 82 (1999) 485.10.1111/j.1151-2916.1999.tb01793.xSearch in Google Scholar

[3] D.G. Baik, S.M. Cho: Thin Solid Films 354 (1999) 227.10.1016/S0040-6090(99)00559-3Search in Google Scholar

[4] G. Heiland: Sensors and Actuators 2 (1982) 343.10.1016/0250-6874(81)80055-8Search in Google Scholar

[5] A. Ghosh, S. Basu: Mater. Chem. Phys. 27 (1991) 45.10.1016/0254-0584(91)90159-RSearch in Google Scholar

[6] Z.C. Jin, I. Hamberg, C.G. Granqvist: Appl. Phys. Lett. 51 (1987) 149.10.1063/1.99008Search in Google Scholar

[7] C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, H. Shen: J Appl. Phys. 85 (1999) 2595.10.1063/1.369577Search in Google Scholar

[8] T. Dietl, in: T.S. Moss, S. Mahajan (Eds.), Handbook on Semiconductors, Vol. 3b, North-Holland, Amsterdam (1994) 1251.Search in Google Scholar

[9] M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey: Phys. Rev. Lett. 93 (2004) 177206.10.1103/PhysRevLett.93.177206Search in Google Scholar

[10] A. Recnik, N. Daneu, T. Walther, W. Mader: J. Am. Ceram. Soc. 84 (2001) 2657.10.1111/j.1151-2916.2001.tb01068.xSearch in Google Scholar

[11] M. Nakamura, N. Kimizuka, T. Mohri: J. Solid State Chem. 86 (1990) 16.10.1016/0022-4596(90)90110-JSearch in Google Scholar

[12] C.F. Li, Y. Bando, M. Nakamura, M. Onoda, N. Kimizuka: J. Solid State Chem. 139 (1998) 347.10.1006/jssc.1998.7856Search in Google Scholar

[13] T. Hörlin, G. Svensson, E. Olsson: J. Mater. Chem. 8 (1998) 2465.10.1039/a805291cSearch in Google Scholar

[14] Y. Yan, S.J. Pennycook, J. Dai, R.P.H. Chang, A.Wang, T.J. Marks: Appl. Phys. Lett. 73 (1998) 2585.10.1063/1.122513Search in Google Scholar

[15] F. Wolf, B. Freitag, W. Mader: Micron (2006) accepted.Search in Google Scholar

[16] L. Reimer, I. Fromm, P. Hirsch, U. Plate, R. Rennekamp: Ultramicroscopy 46 (1992) 335.10.1016/0304-3991(92)90023-DSearch in Google Scholar

[17] K. Kimoto, T. Sekiguchi, T. Aoyama: J. Electr. Microsc. 46 (1997) 369.10.1093/oxfordjournals.jmicro.a023532Search in Google Scholar

[18] T. Walther, W. Mader: Inst. Phys. Conf. Ser. 164 (1999) 121.Search in Google Scholar

[19] Z.L. Wang, J. Bentley, N.D. Evans: Micron 31 (2000) 355.10.1016/S0968-4328(99)00114-6Search in Google Scholar

[20] T. Walther, H. Kalisch, K. Heime, M. Heuken, I. Marko, G. P. Yablonskii: Phys. Stat. Sol. (a) 180 (2000) 351.10.1002/1521-396X(200007)180:1<351::AID-PSSA351>3.0.CO;2-2Search in Google Scholar

[21] T. Walther: Ultramicroscopy 96 (2003) 401.10.1016/S0304-3991(03)00104-9Search in Google Scholar

[22] U. Golla-Schindler, G. Benner, A. Putnis: Ultramicroscopy 96 (2003) 573.10.1016/S0304-3991(03)00118-9Search in Google Scholar

[23] P.E. Batson, K.L. Kavanagh, J.M. Woodall, J.W. Mayer: Phys. Rev. Lett. 57 (1986) 2729.10.1103/PhysRevLett.57.2729Search in Google Scholar

[24] J.A. Hunt, D.B. Williams: Ultramicroscopy 38 (1991) 47.10.1016/0304-3991(91)90108-ISearch in Google Scholar

[25] T. Walther: Z. Metallkd. 96 (2005) 429.10.3139/146.018131Search in Google Scholar

[26] F. Wolf, W. Mader: Optik 10, Suppl. 8 (1999) 66.Search in Google Scholar

[27] J. Albertsson, S.C. Abrahams, A. Kvick: Acta Cryst. B 45 (1989) 34.10.1107/S0108768188010109Search in Google Scholar

[28] M.J. Hytch, J.L Putaux, J.M. Penisson: Nature 423 (2003) 270.10.1038/nature01638Search in Google Scholar

[29] R.C. Ecob, W.M. Stobbs: J. Microsc. 129 (1983) 275.10.1111/j.1365-2818.1983.tb04184.xSearch in Google Scholar

[30] G.J. Wood, W.M. Stobbs, D.J. Smith: Philos. Mag. A 50 (1984) 375.10.1080/01418618408244234Search in Google Scholar

[31] C.B. Boothroyd, A.P. Crawley, W.M. Stobbs: Philos. Mag. A 54 (1986) 663.10.1080/01418618608244025Search in Google Scholar

[32] T. Walther, C.J. Humphreys: Inst. Phys. Conf. Ser. 147 (1995) 103.Search in Google Scholar

[33] T. Walther, C.J. Humphreys: J. Crystal Growth 197 (1999) 113.10.1016/S0022-0248(98)00930-0Search in Google Scholar

[34] N. Hilbrandt, M. Martin: Ber. Bunsen-Gesellschaft Phys. Chem. Chem. Phys. 102 (1998) 1747.10.1002/bbpc.19981021204Search in Google Scholar

[35] P.M. Woodward, D.E. Cox, E. Moshopoulou, A.W. Sleight, S. Morimoto: Phys. Rev. B 62 (2000) 844.10.1103/PhysRevB.62.844Search in Google Scholar

[36] M. Boiocchi, F. Caucia, M. Merli, D. Prella, L. Ungaretti: Europ. J. Mineral. 13 (2001) 871.10.1127/0935-1221/2001/0013/0871Search in Google Scholar

[37] R.F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed., Plenum, New York (1996) 304.10.1007/978-1-4757-5099-7Search in Google Scholar

[38] P. Rez: Ultramicrosopy 9 (1982) 283.10.1016/0304-3991(82)90213-3Search in Google Scholar

[39] T. Walther: J. Microsc. 215 (2004) 191.10.1111/j.0022-2720.2004.01359.xSearch in Google Scholar PubMed

[40] T.Walther, N. Daneu, A. Recnik: Interface Science 12 (2004) 267.10.1023/B:INTS.0000028656.12913.8aSearch in Google Scholar

[41] G. Cliff, G.W. Lorimer: J. Microsc. 103 (1975) 203.10.1111/j.1365-2818.1975.tb03895.xSearch in Google Scholar

[42] T. Walther, A. Recnik, N. Daneu: Microchim. Acta (2006) in press.Search in Google Scholar

Received: 2006-01-16
Accepted: 2006-04-03
Published Online: 2022-02-12

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Professor Dr. Knut Urban 65 Years
  4. Basic
  5. Ordering processes and atomic defects in FeCo
  6. Atomic resolution electron tomography: a dream?
  7. Electron tomography of microelectronic device interconnects
  8. Aberration correction in electron microscopy
  9. Off-axis electron holography: Materials analysis at atomic resolution
  10. Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
  11. Prospects of the multislice method for CBED pattern calculation
  12. Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
  13. Quantitative assessment of nanoparticle size distributions from HRTEM images
  14. Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
  15. Structural domains in antiferromagnetic LaFeO3 thin films
  16. Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
  17. Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
  18. Dislocation imaging in fcc colloidal single crystals
  19. Applied
  20. Omega phase transformation – morphologies and mechanisms
  21. Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
  22. Wetting of aluminium-based complex metallic alloys
  23. Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
  24. Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
  25. On the formation of Si nanowires by molecular beam epitaxy
  26. Self-induced oscillations in Si and other semiconductors
  27. Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
  28. An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
  29. Radiation damage during HRTEM studies in pure Al and Al alloys
  30. Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
  31. Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
  32. Microstructure and properties of surface-treated Timetal 834
  33. Notifications
  34. Personal
  35. Conferences
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0149/html
Scroll to top button