Home Atomic resolution electron tomography: a dream?
Article
Licensed
Unlicensed Requires Authentication

Atomic resolution electron tomography: a dream?

  • Dirk Van Dyck EMAIL logo , Sandra Van Aert and Mihail Croitoru
Published/Copyright: February 12, 2022
Become an author with De Gruyter Brill

Abstract

In this paper, the possibilities and intrinsic physical limits to atomic resolution electron tomography are discussed. It is shown that atomic resolution electron tomography is in principle possible and may provide atom position coordinates with sufficient precision to use as input data for theoretical ab-initio calculations. For amorphous materials which are subject to radiation damage it may require a lower voltage and the use of a Cs and Cc corrector. For perfect crystalline samples the projected structure can be reconstructed from exit waves using the channeling theory. Combining the reconstructions obtained from different zone axis orientations then yields the 3D atomic structure. The most difficult objects will be semicrystalline materials where strong dynamic scattering interferes with weak signals from the aperiodicity. Here we suggest to use a new technique called precession laminography. Finally, doubt is raised about the practical usability of optical sectioning by HAADF STEM.


Dedicated to Professor Dr. Knut Urban on the occasion of his 65th birthday



Prof. Dr. D. Van Dyck University of Antwerp, Department of Physics Groenenborgerlaan 171, 2020 Antwerp, Belgium Tel.: +32 3 265 0258 Fax: +32 3 265 3318

Funding statement: The authors gratefully acknowledge the financial support of the Fund for Scientific Research-Flanders (FWO)

References

[1] R. Henderson: Quarterly Reviews of Biophysics 28 (1995) 171.10.1017/S003358350000305XSearch in Google Scholar

[2] P.A. Midgley, J.M. Thomas, L. Laffont, M. Weyland, R. Raja, B.F.G. Johnson, T. Khimyak: Journal of Physical Chemistry B 108 (2004) 4590.10.1021/jp049750bSearch in Google Scholar

[3] P.A. Midgley, M. Weyland: Ultramicroscopy 96 (2003) 413.10.1016/S0304-3991(03)00105-0Search in Google Scholar

[4] U. Ziese, K.P. de Jong, A.J. Koster: Applied Catalysis A – General 260 (2004) 71.10.1016/j.apcata.2003.10.014Search in Google Scholar

[5] C. Kubel, A. Voigt, R. Schoenmakers, M. Otten, D. Su, T.C. Lee, A. Carlsson, J. Bradley: Microscopy and Microanalysis 11 (2005) 378.10.1017/S1431927605050361Search in Google Scholar

[6] E. Philp, J. Sloan, A.I. Kirkland, R.R. Meyer, S. Friedrichs, J.L. Hutchison, M.L.H. Green: Nature Materials 2 (2003) 788.10.1038/nmat1020Search in Google Scholar

[7] W.M.J. Coene, A. Thust, M. Op de Beeck, D. Van Dyck: Ultramicroscopy 64 (1996) 109.10.1016/0304-3991(96)00010-1Search in Google Scholar

[8] H. Rose: Optik 85 (1990) 19.10.1002/pauz.19900190221Search in Google Scholar

[9] D. Van Dyck, S. Van Aert, A.J. den Dekker, A. van den Bos: Ultramicroscopy 98 (2003) 27.10.1016/S0304-3991(03)00023-8Search in Google Scholar

[10] D. Van Dyck, A.F. de Jong: Ultramicroscopy 47 (1992) 266.10.1016/0304-3991(92)90202-USearch in Google Scholar

[11] A.C. Kak, M. Slaney: Computerized Tomographic Imaging, IEEE Press, New York (1988).Search in Google Scholar

[12] P.A. Midgley, M. Weyland: Ultramicroscopy 96 (2002) 413.10.1016/S0304-3991(03)00105-0Search in Google Scholar

[13] J. Frank: Electron Tomography. Three-dimensional Imaging with the Transmission Electron Microscope, Plenum Press, New York (1992).Search in Google Scholar

[14] A. van den Bos, A.J. den Dekker: Advances in Imaging and Electron Physics 117 (2001) 241.10.1016/S1076-5670(01)80114-2Search in Google Scholar

[15] S. Van Aert, A.J. den Dekker, A. van den Bos, D. Van Dyck: Advances in Imaging and Electron Physics 130 (2004) 1.10.1016/S1076-5670(04)30001-7Search in Google Scholar

[16] S. Van Aert, A.J. den Dekker, D. Van Dyck, A. van den Bos: J. Structural Biology 138 (2002) 21.10.1016/S1047-8477(02)00016-3Search in Google Scholar

[17] D. Van Dyck, M. Op de Beeck: Ultramicroscopy 64 (1996) 99.10.1016/0304-3991(96)00008-3Search in Google Scholar

[18] S. Van Aert, A.J. den Dekker, D. Van Dyck: Micron 35 (2004) 425.10.1016/j.micron.2004.01.007Search in Google Scholar

[19] D. Van Dyck: Advances in Imaging and Electron Physics 123 (2002) 105.10.1016/S1076-5670(02)80062-3Search in Google Scholar

[20] W. Röntgen: Sitzungsber. der Würzburger Physik-Mediz. Gesellschaft (1895) 132.Search in Google Scholar

[21] E. Pohl: Swiss patent no. 155613, 30 June 1930.Search in Google Scholar

[22] B. Ziedses des Plantes: Acta Radio. 13 (1932) 182.10.3109/00016923209135135Search in Google Scholar

[23] http://lca.kaist.ac.kr/Researches/2000/pcbtomo.htmlSearch in Google Scholar

[24] A.Y. Borisevich, A.R. Lupini, S.J. Pennycook: Proceedings of the National Academy of Sciences of the United States of America 103 (2006) 3044.10.1073/pnas.0507105103Search in Google Scholar PubMed PubMed Central

[25] S.J. Pennycook, M. Varela, C.J.D. Hetherington: MRS Bulletin 31 (2006) 36.10.1557/mrs2006.4Search in Google Scholar

Received: 2006-01-09
Accepted: 2006-03-04
Published Online: 2022-02-12

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Professor Dr. Knut Urban 65 Years
  4. Basic
  5. Ordering processes and atomic defects in FeCo
  6. Atomic resolution electron tomography: a dream?
  7. Electron tomography of microelectronic device interconnects
  8. Aberration correction in electron microscopy
  9. Off-axis electron holography: Materials analysis at atomic resolution
  10. Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
  11. Prospects of the multislice method for CBED pattern calculation
  12. Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
  13. Quantitative assessment of nanoparticle size distributions from HRTEM images
  14. Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
  15. Structural domains in antiferromagnetic LaFeO3 thin films
  16. Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
  17. Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
  18. Dislocation imaging in fcc colloidal single crystals
  19. Applied
  20. Omega phase transformation – morphologies and mechanisms
  21. Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
  22. Wetting of aluminium-based complex metallic alloys
  23. Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
  24. Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
  25. On the formation of Si nanowires by molecular beam epitaxy
  26. Self-induced oscillations in Si and other semiconductors
  27. Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
  28. An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
  29. Radiation damage during HRTEM studies in pure Al and Al alloys
  30. Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
  31. Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
  32. Microstructure and properties of surface-treated Timetal 834
  33. Notifications
  34. Personal
  35. Conferences
Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0141/html
Scroll to top button