Startseite Model of growth kinetics of nitrided layer in the binary Fe–N system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Model of growth kinetics of nitrided layer in the binary Fe–N system

  • Jerzy Ratajski EMAIL logo
Veröffentlicht/Copyright: 8. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The mathematical description of the kinetics of a layer development is subjectal to a continuous evolution connected with a growing amount of empirical data. Commencing with attempts to describe selected stages of this process, attempts are made at present to mathematically represent phenomena occurring in a gas atmosphere, on the boundary of gas-metal, and in a nitrided material, together with a description of mutual dependencies between these phenomena. The model proposed in this paper, which describes the growth of the zones of a layer nitrided in conditions of a diffusion quasi-equilibrium, is a simple and convenient tool allowing for both the determination of nitrogen diffusion coefficients in the layer’s monophase zones and for forecasting the growth of the layer’s zones as a function of the time of the process and the nitrogen potential.


Dr. Jerzy Ratajski Physics Division Technical University of Koszalin Racławiska 15–17 75-620 Koszalin, Poland Tel.: +48 94 3478345 Fax: +48 94 34 26 753

References

[1] A. Fri: Metalloved. Term. Obrab. Met. 3 (1974) 19.10.1086/arlisnanews.3.1.27945371Suche in Google Scholar

[2] V.G. Paranjpe, M. Cohen, M.B. Bever, C.F. Floe.: Trans. Am. Inst. of Molding and Metall. Eng. 188 (1950) 261.10.1007/BF03398999Suche in Google Scholar

[3] H.C.F. Rozendaal, E.J. Mittemeijer, P.F. Colijn, P.J. Van Der Schaaf: Metall. Trans. A 14 (1983) 395–399.10.1007/BF02644217Suche in Google Scholar

[4] K. Schwerdtfeger, P. Grieveson, E.T. Tukdogan: Metall. Trans. A 245 (1969) 2461.Suche in Google Scholar

[5] C.A. Wert: Phys. Rev. 79 (1950) 601.10.1103/PhysRev.79.601Suche in Google Scholar

[6] N.M. Buslovikh, E.Ya. Makhtinger: Metal Science and Heat Treatment, 1/2 (1982) 30.10.1007/BF00699313Suche in Google Scholar

[7] P. Hayes, P. Grieveson: Acta Metall. 23 (1975) 937.10.1016/0001-6160(75)90006-1Suche in Google Scholar

[8] Pan Jiansheng, in: Proc. 3th Int. Congr. on Heat Treatment of Materials, Shanghai (1983) 624.Suche in Google Scholar

[9] Ja.D. Kogan, A.A. Bulgacz: Modelirowanie na EWM Kinietiki Diffuzionnogo Nasyszczenija Pri Gazowom Azitirowanii, MiTOM, 1 (1984) 10.Suche in Google Scholar

[10] W.D. Jentzsch, F. Esser, S. Bohmer: Neue Hütte, 1 (1981) 19.Suche in Google Scholar

[11] J. Ratajski, J. Ignaciuk, J. Zysk: Proc. of 5th Inter. Cong. on Heat Treatment Materials, Budapest (1986) 224.Suche in Google Scholar

[12] E. Fromm: Z. Metallkd. 57 (1966) 60.10.1515/ijmr-1966-570112Suche in Google Scholar

[13] I. Torchane, P. Bilger, J. Dulcy, M. Gantois: Metall. Trans.A 27 (1996) 1823.10.1007/BF02651932Suche in Google Scholar

[14] W. Pitsch, E. Houdremont: Archiv für das Eisenhüttenwesen 27 (1956) 281.10.1002/srin.195601403Suche in Google Scholar

[15] K.P. Gurow, B.A. Kartaszkin, Ju.E. Ugastie: Wzaimnaja Diffuzija w Mnogofaznych Sistemach, Moskwa “Nauka”' 1981.Suche in Google Scholar

[16] J.S. Kirkaldy: Canad. J. Phys. 36 (1958) 917.10.1139/p58-098Suche in Google Scholar

[17] G.V. Kidson: J. Nucl. Mater. 3 (1961) 21.10.1016/0022-3115(61)90175-1Suche in Google Scholar

[18] J. Cranck: The Mathematics of Diffusion, Clarendon Press Oxford (1956).Suche in Google Scholar

[19] M.A.J. Somers, E.J. Mittemeijer: Metall. Trans. A 26 (1995) 57.10.1007/BF02669794Suche in Google Scholar

Received: 2003-06-06
Accepted: 2004-04-26
Published Online: 2022-02-08

© 2004 Carl Hanser Verlag, München

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0152/html
Button zum nach oben scrollen