Home The mechanism of columnar-to-equiaxed transition during electromagnetic centrifugal solidification
Article
Licensed
Unlicensed Requires Authentication

The mechanism of columnar-to-equiaxed transition during electromagnetic centrifugal solidification

  • Minghu Guo , Yuanshen Yang EMAIL logo , Fuan Hua and Zhuangqi Hu
Published/Copyright: February 8, 2022
Become an author with De Gruyter Brill

Abstract

A series of Hastelloy C tubes were solidified under a centrifugal field with various conditions of bulk liquid flow obtained with a controllable electromagnetic field. Their macrostructures show that the columnar-to-equiaxed transition was promoted both by increasing electromagnetic stirring and by increasing the superheat, and the application of electromagnetic stirring at different times can also influence the percentage of the total area occupied by the equiaxed region. Mechanical damage of dendrites is the most probable mechanism for the promotion of the columnar-to-equiaxed transition with high velocity flows. The detachment of the nuclei originated in the chill zone can also promote the columnar-to-equiaxed transition.


Yuansheng Yang Department of Superalloys Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang, 110016 P. R.China Tel.: +8624 23971728 Fax: +86242389 1320

  1. The work is supported by the National Science Foundation of China (No. 59995444)

References

[1] W.C. Winegard, B. Chalmers: Tans. Amer. Soc. Met. 46 (1954) 1214.Search in Google Scholar

[2] B. Chalmers: J. Australian Inst. Metals 8 (1963) 255.Search in Google Scholar

[3] K.A. Jackson, J.D. Hunt, D.R. Uhlmann, P. Seward: Trans. Met. Soc. AIME 236 (1966) 149.Search in Google Scholar

[4] M.H. Burden, J.D. Hunt: J. Crystal Growth 22 (1974) 99.10.1016/0022-0248(74)90126-2Search in Google Scholar

[5] W.C. Johnston, G.R. Kotler, S. O’Hara, H.V. Ashcom, W.A. Tiller: Trans. Met. Soc. AIME 233 (1965) 1856.Search in Google Scholar

[6] C. Vives: Int. J. Heat Mass Transfer 33 (1990) 2585.10.1016/0017-9310(90)90194-YSearch in Google Scholar

[7] W.D. Griffiths, D.G. McCartney: Mater. Sci. Eng. A 216 (1996) 47.10.1016/0921-5093(96)10392-0Search in Google Scholar

[8] J. Pilling, A. Hellawel: Metall. Trans. A 27 (1996) 229.10.1007/BF02647763Search in Google Scholar

[9] K. Dragnevski, A.M. Mullis, D.J. Walker, R.F. Cochrance: Acta Mater. 50 (2002) 3743.10.1016/S1359-6454(02)00186-6Search in Google Scholar

[10] W.Q. Zhang, Y.S. Yang, Y.F. Zhu: Met. Mater. Trans.A29 (1998) 404.10.1007/s11661-998-0193-zSearch in Google Scholar

[11] Y.S. Yang, Z.Q. Hu: Z. Metallkd. 91 (2000) 280.10.1006/jeth.1999.2617Search in Google Scholar

[12] X.Q. Wu, Y.S. Yang, Q. Zhan: Mater. Sci. Tech.15 (1999) 725.10.1179/026708399101506337Search in Google Scholar

[13] W.Q. Zhang, Y.S. Yang, Z.Q. Hu: Mod. Simu. in Mater. Sci. Eng. 4 (1996) 421.10.1088/0965-0393/4/4/007Search in Google Scholar

[14] R. Morando, H. Biloni, G.S. Cole, G.F. Bolling: Metall.Trans. 1 (1970) 1407.10.1007/BF02900262Search in Google Scholar

[15] C.A. Siqueira, N. Cheung, A. Garcia: Metall. Mater. Trans. A 33 (2002) 2107.10.1007/s11661-002-0042-4Search in Google Scholar

[16] Y.L. He, Y.S. Yang, L. Yu, Z.Q. Hu: Acta Metal. Sinica 36 (2000) 874.Search in Google Scholar

Received: 2003-07-30
Accepted: 2004-05-07
Published Online: 2022-02-08

© 2004 Carl Hanser Verlag, München

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0154/html
Scroll to top button