Abstract
The metastable nanocrystalline γ form of gallium oxide has been prepared and its microstructure and thermochemistry have been studied for the first time by employing X-ray and electron diffraction, high-resolution transmission electron microscopy, adiabatic and differential scanning calorimetry. The randomly oriented crystallites of maximum 5 nm in size have been observed. The sponge-like morphology of γ-Ga2O3 particles may explain the high specific surface area, previously reported for this material. The defect spinel-type structure of γ-Ga2O3 is similar to that of γ and η-Al2O3. Up to 5.7 wt.% of water can be stored in γ-Ga2O3 and subsequently released at elevated temperatures. Dry γ-Ga2O3 specifically absorbs atmospheric water at room temperature. The transformation of γ-Ga2O3 into stable β-Ga2O3 occurs in two steps. In the range 650–800 K, γ'-Ga2O3 is formed in the course of a reversible higher-order phase transition. The latter irreversibly transforms into β-form above 873 K. The enthalpy of this exothermic transformation is determined as –19.3 ± 0.4 kJ · mol–1. The coefficients of the Gibbs energy equation for γ and γ'-Ga2O3 have been assessed.
The authors wish to express their thanks to Albrecht Meyer, Gerhard Kaiser, Ewald Schmitt, Kersten Hahn, and Maria Sycha from Max-Planck-Institute
References
[1] V.M. Goldschmidt, T. Barth, G. Lunde: Skr. Norske Ved. Akad. Oslo Mat. 5 (1925) 24.Suche in Google Scholar
[2] W.A. Roth, G. Becker: Z. phys. Chem. A 159 (1932) 1.10.1515/zpch-1932-15902Suche in Google Scholar
[3] L.M. Foster, H.C. Stumpf: J. Am. Chem. Soc. 73 (1951) 1590.10.1021/ja01148a052Suche in Google Scholar
[4] R. Roy, V.G. Hill, E.F. Osborn: J. Am. Chem. Soc. 74 (1952) 719.10.1021/ja01123a039Suche in Google Scholar
[5] R. Roy, V.G. Hill, E.F. Osborn: Ind. Eng. Chem. 45 (1953) 819.10.1021/ie50520a047Suche in Google Scholar
[6] C.O. Arean, A.L. Bellan, M.P.Mentruit, M.R. Delgado, G.T. Palomino: Microporous Mesoporous Mat. 40 (2000) 35.10.1016/S1387-1811(00)00240-7Suche in Google Scholar
[7] I. Nowak, J. Quartararo, E.G. Derouane, J.C. Vedrine: Appl. Catal. A 251 (2003) 107.10.1016/S0926-860X(03)00299-0Suche in Google Scholar
[8] D. Freeman, R.P.K. Wells, G.J. Hutchings: J. Catal. 205 (2002) 358.10.1006/jcat.2001.3446Suche in Google Scholar
[9] J.C. Lavalley, M. Daturi, V. Montouillout, G. Clet, C.O. Arean, M.R. Delgado, A. Sahibed-Dine: Phys. Chem. Chem. Phys. 5 (2003) 1301.10.1039/b211767nSuche in Google Scholar
[10] M. Haneda, Y. Kintaichi, T. Mizushima, N. Kakuta, H. Hamada: Appl. Catal. B 31 (2001) 81.10.1016/S0926-3373(00)00271-XSuche in Google Scholar
[11] K. Sohlberg, S.J. Pennycook, S.T. Pantelides: Chem. Eng. Comm. 181 (2000) 107.10.1080/00986440008912818Suche in Google Scholar
[12] J. Böhm: Angew. Chem. 53 (1940) 131.10.1002/ange.19400531116Suche in Google Scholar
[13] K. Pohl: Naturwiss. 55 (1968) 82.10.1007/BF00599490Suche in Google Scholar
[14] E. Gmelin: Thermochim. Acta 110 (1987) 183.10.1016/0040-6031(87)88226-6Suche in Google Scholar
[15] S.B. Ota, E. Gmelin: Meas. Sci. Technol. 3 (1992) 1047.10.1088/0957-0233/3/11/004Suche in Google Scholar
[16] G. Paglia, C.E. Buckley, A.L. Rohl, B.A. Hunter, R.D. Hart, J.V. Hanna, L.T. Byrne: Phys. Rev. B 68 (2003) 144110.10.1103/PhysRevB.68.144110Suche in Google Scholar
[17] R.D. Shannon, C.T. Prewitt: Acta Cryst. B 25 (1969) 925.10.1107/S0567740869003220Suche in Google Scholar
[18] R.-S. Zhou, R.L. Snyder: Acta Cryst. B 47 (1991) 617.10.1107/S0108768191002719Suche in Google Scholar
[19] R.A. Young, D.B. Willes: J. Appl. Crystallogr. 15 (1982) 430.10.1107/S002188988201231XSuche in Google Scholar
[20] K. Sohlberg, S-J. Pennycook, S.T. Pantelides: J. Am. Chem. Soc. 121 (1999) 7493.10.1021/ja991098oSuche in Google Scholar
[21] M. Nguefack, A.F. Popa, S. Rossignol, C. Kappenstein: Phys. Chem. Chem. Phys. 5 (2003) 4279.10.1039/B306170ASuche in Google Scholar
[22] Chen Qiyuan, Zeng Wenming, Chen Xinmin, Gu Songqing, Yang Guanqun, Zhou Huifang, Yin Zhonglin: Thermochim. Acta 253 (1995) 33.10.1016/0040-6031(94)01969-NSuche in Google Scholar
[23] A. Navrotsky, B.A. Wechsler, K. Geisinger, F. Seifert: J. Am. Ceram. Soc. 69 (1986) 418.10.1111/j.1151-2916.1986.tb04772.xSuche in Google Scholar
[24] CRC Handbook of Chemistry and Physics, 82nd Edition, CRC Press LLC (2002) 6.Suche in Google Scholar
[25] G.B. Adams, H.L. Johnston: J. Am. Chem. Soc. 74 (1952) 4788.10.1021/ja01139a018Suche in Google Scholar
[26] G. Paglia, C.E. Buckley, A.L. Rohl, R.D. Hart, K. Winter, A.J. Studer, B.A. Hunter, J.V. Hanna: Chem. Mater. 16 (2004) 220.10.1021/cm034917jSuche in Google Scholar
[27] A.T. Dinsdale: Calphad 15 (1991) 317.10.1016/0364-5916(91)90030-NSuche in Google Scholar
[28] M. Zinkevich, F. Aldinger: J. Am. Ceram. Soc. 87 (2004) 683.10.1111/j.1551-2916.2004.00683.xSuche in Google Scholar
© 2004 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- 85 Years DGM
- Fachausschuss ,,Materialographie“
- Fachausschuss ,,Mechanische Oberflächenbehandlungen“
- Fachausschuss „Titan“
- Fachausschuss ,,Gefüge und Eigenschaften von Polymerwerkstoffen“
- Characterization of the fcc/bcc orientation relationship by EBSD using pole figures and variants
- Microstructural and thermodynamic study of γ-Ga2O3
- Spray forming of 2014-Al alloy based composites with injection of SiC particulates
- Size effects in the plastic deformation of NiAl thin films
- Fracture parameters of chevron-notched Al2O3/Nb sandwich specimens
- HVEM in situ study of fracture of Al2O3/Nb sandwich specimens
- Articles Basic
- Assessment of thermodynamic functions in the MgO–Al2O3–SiO2 system
- Derivation and consistency of the partial functions of a ternary system involving interaction coefficients
- Contribution to the zinc-rich side of the Ti–Zn system
- Measurement of the surface tension of liquid Ga, Bi, Sn, In and Pb by the constrained drop method
- Articles Applied
- Model of growth kinetics of nitrided layer in the binary Fe–N system
- Einfluss von Molybdän auf die Beständigkeit von Stahlanoden zum Verchromen in „Chromispel-C“-Elektrolyten
- The mechanism of columnar-to-equiaxed transition during electromagnetic centrifugal solidification
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Books/Bücher
- Conferences/Konferenzen
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- 85 Years DGM
- Fachausschuss ,,Materialographie“
- Fachausschuss ,,Mechanische Oberflächenbehandlungen“
- Fachausschuss „Titan“
- Fachausschuss ,,Gefüge und Eigenschaften von Polymerwerkstoffen“
- Characterization of the fcc/bcc orientation relationship by EBSD using pole figures and variants
- Microstructural and thermodynamic study of γ-Ga2O3
- Spray forming of 2014-Al alloy based composites with injection of SiC particulates
- Size effects in the plastic deformation of NiAl thin films
- Fracture parameters of chevron-notched Al2O3/Nb sandwich specimens
- HVEM in situ study of fracture of Al2O3/Nb sandwich specimens
- Articles Basic
- Assessment of thermodynamic functions in the MgO–Al2O3–SiO2 system
- Derivation and consistency of the partial functions of a ternary system involving interaction coefficients
- Contribution to the zinc-rich side of the Ti–Zn system
- Measurement of the surface tension of liquid Ga, Bi, Sn, In and Pb by the constrained drop method
- Articles Applied
- Model of growth kinetics of nitrided layer in the binary Fe–N system
- Einfluss von Molybdän auf die Beständigkeit von Stahlanoden zum Verchromen in „Chromispel-C“-Elektrolyten
- The mechanism of columnar-to-equiaxed transition during electromagnetic centrifugal solidification
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Books/Bücher
- Conferences/Konferenzen