Home Prediction of the critical conditions for dynamic recrystallization in metals
Article
Licensed
Unlicensed Requires Authentication

Prediction of the critical conditions for dynamic recrystallization in metals

  • G. Gottstein EMAIL logo , E. Brünger , M. Frommert , M. Goerdeler and M. Zeng
Published/Copyright: February 5, 2022
Become an author with De Gruyter Brill

Abstract

Engineering approaches to model dynamic recrystallization (DRX) explicitly assume the existence of a critical strain for DRX. Since the strain is not a state variable of crystal plasticity, however, there is no critical strain, rather there are critical conditions for microstructural instability. It was proposed recently that these critical conditions can be expressed in terms of a point of inflection on the θ(σ) curve, where σ is the flow stress and θ is the hardening rate. A theoretical framework is presented to predict these critical conditions on the basis of a dislocation work hardening model. Once tuned to a specific hardening curve the model allows to predict the onset of DRX for different temperatures and strain rates, and, in principle, for changing materials chemistry.


Dedicated to Professor Dr. Ottmar Vöhringer on occasion of his 65th birthday



Prof. Dr. G. Gottstein Institut für Metallkunde und Metallphysik RWTH Aachen, D-52056 Aachen Tel.: +49 241 80 2 68 60 Fax: +49 241 80 2 26 08

References

[1] J.J. Jonas, H.J. McQueen: Treatise Mater. Sci. Technol. 6 (1975) 393.10.1016/B978-0-12-341806-7.50014-3Search in Google Scholar

[2] J.J. Jonas, C.M. Sellars, W.J.McG. Tegart: Metall. Rev. 14 (1969) 1.10.1179/095066069790138056Search in Google Scholar

[3] H. Mecking, G. Gottstein, in: Recrystallization of Metallic Materials, Dr. Riederer Verlag, Stuttgart (1978) 195.Search in Google Scholar

[4] M.J. Luton, C.M. Sellars: Acta Metall. 17 (1969) 1033.10.1016/0001-6160(69)90049-2Search in Google Scholar

[5] G. Gottstein, D. Zabardjadi, H. Mecking: Metal Sci. 13 (1979) 223.10.1179/msc.1979.13.3-4.223Search in Google Scholar

[6] G. Gottstein, U.F. Kocks: Acta Metall. 31 (1983) 175.10.1016/0001-6160(83)90077-9Search in Google Scholar

[7] R. Bromley, C.M. Sellars, in: Microstructure and Design of Alloys, Inst. of Metals, London (1973) 380.Search in Google Scholar

[8] D. Ponge, G. Gottstein: Acta Mater. 46 (1998) 69.10.1016/S1359-6454(97)00233-4Search in Google Scholar

[9] Y. Brechet, Y. Estrin, F. Reusch: Scripta Mater. 39 (1998) 1191.10.1016/S1359-6462(98)00317-0Search in Google Scholar

[10] V. Sandström, V. Lagneborg: Acta Mater. 23 (1975) 387.10.1016/0001-6160(75)90132-7Search in Google Scholar

[11] V. Roberts, B. Ahlblom: Acta Mater. 26 (1978) 801.10.1016/0001-6160(78)90030-5Search in Google Scholar

[12] E.I. Poliak, J.J. Jonas: Acta Mater. 44 (1996) 127.10.1016/1359-6454(95)00146-7Search in Google Scholar

[13] E.W. Hart: Acta Metall. 18 (1970) 599.10.1016/0001-6160(70)90089-1Search in Google Scholar

[14] N.D. Ryan, H.J. McQueen: Can. Met. Quart. 29 (1990) 147.10.1179/cmq.1990.29.2.147Search in Google Scholar

[15] F. Roters, D. Raabe, G. Gottstein: Acta Mater. 48 (2000) 4181.10.1016/S1359-6454(00)00289-5Search in Google Scholar

[16] Y. Estrin, L.S. Tóth, A. Molinari, Y. Bréchet: Acta Mater. 46 (1998) 5509.10.1016/S1359-6454(98)00196-7Search in Google Scholar

[17] M. Müller, M. Zehetbauer, A. Borbély, T. Ungár: Scripta Mater. 35 (1996) 1461.10.1016/S1359-6462(96)00319-3Search in Google Scholar

[18] M. Müller, M. Zehetbauer, A. Borbély, T. Ungár: Z. Metallkd. 86 (1995) 827.10.1515/ijmr-1995-861205Search in Google Scholar

[19] F.J. Humphreys: Acta Mater. 45 (1997) 5031.10.1016/S1359-6454(97)00173-0Search in Google Scholar

[20] F.J. Humphreys: Scripta Mater. 27 (1992) 1007.10.1016/0956-716X(92)90144-4Search in Google Scholar

[21] D. Weygand, Y. Bréchet, J. Lepinoux: Acta Mater. 46 (1998) 6559.10.1016/S1359-6454(98)00318-8Search in Google Scholar

[22] M. Zeng, G. Gottstein: Aluminium 78 (2002) 878.Search in Google Scholar

[23] A.M. Wusatowska–Sarnek, H. Miura, T. Sakai: Mater. Sci. Eng. A 323 (2002) 177.10.1016/S0921-5093(01)01336-3Search in Google Scholar

[24] H. Gleiter: Acta Metall. 17 (1969) 1421.10.1016/0001-6160(69)90004-2Search in Google Scholar

[25] U.F. Kocks: J. Eng. Mater. Technol. 98 (1976) 76.10.1115/1.3443340Search in Google Scholar

Received: 2002-10-10
Published Online: 2022-02-05

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. On the dislocation mechanisms of dynamic strain ageing in fatigued plain carbon steels
  6. Effect of the γ volume fraction on the creep strength of Ni-base superalloys
  7. Auswirkung von Ausscheidungen auf das bestrahlungsinduzierte Schwellverhalten und die Hochtemperaturversprödung in dem austenitischen Stahl X10 CrNiMoTiB 15 15
  8. Fatigue life and cyclic deformation behaviour of quenched and tempered steel AISI 4140 at two-step stress- and total-strain-controlled push–pull loading
  9. Untersuchungen zur Anrisslebensdauervorhersage gekerbter Proben mit dem örtlichen Konzept am Beispiel des Stahls Cm15
  10. Bewertung des Ermüdungsverhaltens von Radstählen anhand von Dehnungs-, Temperatur- und Widerstandsmessungen
  11. On the nature of internal interfaces in tempered martensite ferritic steels
  12. Ermittlung von Grenzformänderungskurven an laser- und elektronenstrahlgeschweißten Stahlblechplatinen
  13. Point defects, precipitates and the strength anomaly in ordered Fe–Al alloys
  14. Isothermal high-temperature fatigue behaviour of a near-γ titanium aluminide alloy
  15. Slow fatigue crack growth in 2024-T3 and Ti-6Al-4V at low and ultrasonic frequency
  16. Structural evolution during the cycling of NiTi shape memory alloys
  17. Phase transformations due to isochronal annealing of Mg – rare earth – Sc–Mn squeeze cast alloys
  18. Isothermal strain-controlled quasi-static and cyclic deformation behavior of magnesium wrought alloy AZ31
  19. Microstructure of die-cast alloys Mg–Zn–Al(–Ca): a study by electron microscopy and small-angle neutron scattering
  20. TEM study of the dislocation structure at the transition from discontinuous to viscous glide in Cu–Al and Cu–Mn alloys at elevated temperatures
  21. Application of electron backscatter diffraction in the SEM to textural problems of coated high-temperature superconductors
  22. Oxide dispersion-strengthened silver: manufacturing and properties
  23. Integrative finite element simulation of the rolling of Al alloys with coupled dislocation density and texture models
  24. Microstructure, surface topography and mechanical properties of slip cast and powder injection moulded microspecimens made of zirconia
  25. Thermisch leitfähig modifizierte Funktionskunststoffe
  26. Tailoring nanocrystalline materials towards potential applications
  27. High-strength Cu–Ti-rich bulk metallic glasses and nano-composites
  28. Nanoskalige Schutzschichten für hochbeanspruchte Werkzeuge und Bauteile
  29. Prediction of the critical conditions for dynamic recrystallization in metals
  30. Notifications/Mitteilungen
  31. Personal/Personelles
  32. Conferences/Konferenzen
Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0109/html?lang=en
Scroll to top button