Home On the dislocation mechanisms of dynamic strain ageing in fatigued plain carbon steels
Article
Licensed
Unlicensed Requires Authentication

On the dislocation mechanisms of dynamic strain ageing in fatigued plain carbon steels

  • Haël Mughrabi EMAIL logo
Published/Copyright: February 5, 2022
Become an author with De Gruyter Brill

Abstract

The fatigue life of plain ferritic carbon steels fatigued in stress-controlled (plastic-strain-controlled) tests exhibits a maximum (minimum) at a temperature of approx. 300 °C as a result of dynamic strain ageing (DSA). In the regime of DSA, an enhanced cyclic hardening related to an increased dislocation density is observed, and the dislocation arrangement changes from a dislocation cell structure (at intermediate stress amplitudes) at room temperature to a dense edge di-/multipolar bundle/wall/vein structure in the temperature range of DSA and back to a dislocation cell/ subgrain structure at higher temperatures. Related effects occur also in α-iron containing some carbon when fatigued at room temperature at a very low strain rate. This behaviour is considered to be typical of body-centred cubic materials.

In the present study, the dislocation mechanisms responsible for this behaviour are discussed in detail, and a dislocation glide model is developed which can explain both the enhanced dislocation density and the change of the dislocation arrangement in the regime of DSA. The model is based on the different mobilities of mobile edge and less mobile screw dislocations in body-centred cubic metals and on the strong tendency towards multiple slip leading to a dislocation cell structure at lower temperatures. In the regime of DSA, it is proposed that the edge dislocations are hindered more strongly in their glide motion by the solute carbon atoms than the screw dislocations so that screws and edges are then more or less equally mobile. Taking into account that screw dislocations of opposite sign annihilate mutually by cross slip, this explains the observed dislocation arrangement of dense edge di-/multipolar bundles/ walls/veins of high dislocation density which, in turn, leads to an enhanced cyclic hardening rate. The dislocation sub-grain structure observed at higher temperatures reflects the increasing tendency for the transformation from dislocation cell to subgrain structures, as the temperature is increased.


Dedicated to Professor Dr. Otmar Vöhringer on the occasion of his 65th birthday



Prof. Dr. H. Mughrabi Lehrstuhl I Martensstr. 5, D-91058 Erlangen –Nürnberg, Germany Tel.: +49 9131 85 27482 Fax: +49 9131 85 27504

References

[1] A.H. Cottrell: Dislocations and Plastic Flow in Crystals, Oxford University Press (1953).Search in Google Scholar

[2] A. von den Beukel, U.F. Kocks: Acta metall. 30 (1982) 1027.10.1016/0001-6160(82)90211-5Search in Google Scholar

[3] K.R. Carson, J. Weertman: Trans. Metall. Soc. AIME 242 (1968) 1413.Search in Google Scholar

[4] B.J. Brindley, P.J. Worthington: Metall. Rev. 15 (1970) 101.10.1179/imr.1970.15.1.101Search in Google Scholar

[5] R.W.K. Honeycombe: Steels: Microstructure and Properties, Edward Arnold, London (1981).Search in Google Scholar

[6] A. Kalk, Ch. Schwink: phys. stat. sol. (b) 172 (1992) 133.10.1002/pssb.2221720114Search in Google Scholar

[7] Ch. Schwink, A. Nortmann: Mater. Sci. Eng. A 234–236 (1997) 1.10.1016/S0921-5093(97)00139-1Search in Google Scholar

[8] Y. Estrin, L.P. Kubin: Res Mechanica 23 (1988) 197.Search in Google Scholar

[9] L.P. Kubin, Y. Estrin: Acta metall. mater. 38 (1990) 697.10.1016/0956-7151(90)90021-8Search in Google Scholar

[10] P. van Liempt, A. Onink, A. Bodin: Adv. Eng. Mater. 4 (2002) 225.10.1002/1527-2648(200204)4:4<225::AID-ADEM225>3.0.CO;2-7Search in Google Scholar

[11] O. Vöhringer, E. Macherauch: Metall 22 (1968) 1002.Search in Google Scholar

[12] D. Löhe, O. Vöhringer, E. Macherauch, in: R.C. Gifkins (Ed.), Proc. 6th Int. Conference on the Strength of Metals and Alloys (ICSMA 6), Vol. 1 (1982) 195.Search in Google Scholar

[13] O. Vöhringer, in: E. Tenckhoff, O. Vöhringer (Eds.), Microstructure and Mechanical Properties, DGM-Informationsgesellschaft, Oberursel (1991) 41.Search in Google Scholar

[14] N.P. Allen, P.G. Forrest, in: Proc. Int. Conference on Fatigue, Institution of Mechanical Engineers (1956) 327.Search in Google Scholar

[15] M.G. Lozinsky, V.S. Ivanov, A.N. Romanov, V.F. Terentyev: Phys. Metals Metallogr. 27 (1967) 115.Search in Google Scholar

[16] D.V. Wilson, J.K. Tromans: Acta metall. 18 (1970) 1197.10.1016/0001-6160(70)90110-0Search in Google Scholar

[17] D.V. Wilson: Metal Science 11 (1977) 17.10.1016/0036-9748(77)90005-9Search in Google Scholar

[18] H. Abdel Raouf, A. Plumtree, T.H. Topper, in: Cyclic Stress– Strain Behaviour –Analysis, Experimentation, and Failure Prediction, ASTM STP 519, Philadelphia, PA (1973) 28.Search in Google Scholar

[19] K. Pohl, P. Mayr, E. Macherauch: Int. J. Fract. 17 (1981) 221.10.1007/BF00053521Search in Google Scholar

[20] D. Eifler, E. Macherauch, in: P. Lukás´, J. Polák, (Eds.), Basic Mechanisms in Fatigue of Metals, Academia, Prague (1988) 215.Search in Google Scholar

[21] H. Mughrabi, F. Ackermann, K. Herz, in: J.T. Fong (Ed.), Fatigue Mechanisms, ASTM STP 675, Philadelphia, PA (1979) 69.10.1520/STP35885SSearch in Google Scholar

[22] H. Mughrabi, K. Herz, X. Stark: Int. J. Fract. 17 (1981) 193.10.1007/BF00053520Search in Google Scholar

[23] M. Weisse, C.K. Wamukwamba, H.-J. Christ, H. Mughrabi: Acta metall. mater. 41 (1993) 2227.10.1016/0956-7151(93)90392-6Search in Google Scholar

[24] H. Mughrabi, H.-J. Christ: ISIJ International 37 (1997) 1154.10.2355/isijinternational.37.1154Search in Google Scholar

[25] C. Sommer, H. Mughrabi, D. Lochner: Acta mater. 46 (1998) 1527 and 1537.10.1016/S1359-6454(97)00362-5Search in Google Scholar

[26] S. Hereñú, I. Alvarez –Armas, A.F. Armas: Scripta mater. 45 (2001) 739.10.1016/S1359-6462(01)01088-0Search in Google Scholar

[27] F. Petry, H.-J. Christ, H. Mughrabi, in: E. Tenckhoff, O. Vöhringer (Eds.), Microstructure and Mechanical Properties of Materials, DGM-Informationsgesellschaft, Oberursel (1990) 79.Search in Google Scholar

[28] R. Zauter, H.-J. Christ, H. Mughrabi: Metall. Mater. Trans. A 25 (1994) 401 and 407.10.1007/BF02647985Search in Google Scholar

[29] M. Gerland, J. Mendez, J. Lépinoux, P. Violan: Mater. Sci. Eng. A 164 (1993) 226.10.1016/0921-5093(93)90667-4Search in Google Scholar

[30] D. Delafosse, G. Lapasset, L.P. Kubin: Scripta metall. mater. 29 (1993) 1379.10.1016/0956-716X(93)90323-KSearch in Google Scholar

[31] K. Bhanu Sankara Rao, M.G. Castelli, J.R. Ellis: Scripta metall. mater. 33 (1995) 1005.10.1016/0956-716X(95)00320-USearch in Google Scholar

[32] M.G. Moscato, M. Avalos, I. Alvarez –Armas, C. Petersen, A.F. Armas: Mater. Sci. Eng. A 234–236 (1997) 834.10.1016/S0921-5093(97)00405-XSearch in Google Scholar

[33] P.B. Hirsch, in: Proc. 1st Int. Conf. on the Strength of Metals and Alloys (ICSMA 1), Suppl. Trans. Japan Inst. Met. 9 (1968) XXX.Search in Google Scholar

[34] J.W. Christian, in: Proc. 2nd Int. Conf. on Strength of Metals and Alloys (ICSMA 2), Vol. 2, American Society for Metals, Ohio (1970) 31.Search in Google Scholar

[35] B. Šesták, A. Seeger: Z. Metallkd. 69 (1978) 195, 355 and 425.10.1515/ijmr-1978-690701Search in Google Scholar

[36] L.P. Kubin: Rev. Def. Behav. Mater. IV (1982) 181.Search in Google Scholar

[37] U. Essmann, H. Mughrabi: Phil. Mag. A 40 (1979) 731.10.1080/01418617908234871Search in Google Scholar

[38] H. Abdel Raouf, T.H. Topper, A. Plumtree, in: Fatigue at Elevated Temperatures, ASTM STP 520, Philadelphia, PA (1973) 300.10.1520/STP38848SSearch in Google Scholar

[39] M. Becker: Dr.-Ing. Thesis, Universität Karlsruhe (1987).Search in Google Scholar

Received: 2002-11-09
Published Online: 2022-02-05

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. On the dislocation mechanisms of dynamic strain ageing in fatigued plain carbon steels
  6. Effect of the γ volume fraction on the creep strength of Ni-base superalloys
  7. Auswirkung von Ausscheidungen auf das bestrahlungsinduzierte Schwellverhalten und die Hochtemperaturversprödung in dem austenitischen Stahl X10 CrNiMoTiB 15 15
  8. Fatigue life and cyclic deformation behaviour of quenched and tempered steel AISI 4140 at two-step stress- and total-strain-controlled push–pull loading
  9. Untersuchungen zur Anrisslebensdauervorhersage gekerbter Proben mit dem örtlichen Konzept am Beispiel des Stahls Cm15
  10. Bewertung des Ermüdungsverhaltens von Radstählen anhand von Dehnungs-, Temperatur- und Widerstandsmessungen
  11. On the nature of internal interfaces in tempered martensite ferritic steels
  12. Ermittlung von Grenzformänderungskurven an laser- und elektronenstrahlgeschweißten Stahlblechplatinen
  13. Point defects, precipitates and the strength anomaly in ordered Fe–Al alloys
  14. Isothermal high-temperature fatigue behaviour of a near-γ titanium aluminide alloy
  15. Slow fatigue crack growth in 2024-T3 and Ti-6Al-4V at low and ultrasonic frequency
  16. Structural evolution during the cycling of NiTi shape memory alloys
  17. Phase transformations due to isochronal annealing of Mg – rare earth – Sc–Mn squeeze cast alloys
  18. Isothermal strain-controlled quasi-static and cyclic deformation behavior of magnesium wrought alloy AZ31
  19. Microstructure of die-cast alloys Mg–Zn–Al(–Ca): a study by electron microscopy and small-angle neutron scattering
  20. TEM study of the dislocation structure at the transition from discontinuous to viscous glide in Cu–Al and Cu–Mn alloys at elevated temperatures
  21. Application of electron backscatter diffraction in the SEM to textural problems of coated high-temperature superconductors
  22. Oxide dispersion-strengthened silver: manufacturing and properties
  23. Integrative finite element simulation of the rolling of Al alloys with coupled dislocation density and texture models
  24. Microstructure, surface topography and mechanical properties of slip cast and powder injection moulded microspecimens made of zirconia
  25. Thermisch leitfähig modifizierte Funktionskunststoffe
  26. Tailoring nanocrystalline materials towards potential applications
  27. High-strength Cu–Ti-rich bulk metallic glasses and nano-composites
  28. Nanoskalige Schutzschichten für hochbeanspruchte Werkzeuge und Bauteile
  29. Prediction of the critical conditions for dynamic recrystallization in metals
  30. Notifications/Mitteilungen
  31. Personal/Personelles
  32. Conferences/Konferenzen
Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0085/html
Scroll to top button