Home Slow fatigue crack growth in 2024-T3 and Ti-6Al-4V at low and ultrasonic frequency
Article
Licensed
Unlicensed Requires Authentication

Slow fatigue crack growth in 2024-T3 and Ti-6Al-4V at low and ultrasonic frequency

  • H. Mayer , B. Holper , B. Zettl and S. E. Stanzl-Tschegg EMAIL logo
Published/Copyright: February 5, 2022
Become an author with De Gruyter Brill

Abstract

Fatigue crack growth in 2024-T3 has been studied in ambient air and in vacuum at load ratios R = –1, R = 0.05 and R = 0.5 using ultrasonic equipment (cycling frequency 20 kHz) and servo-hydraulic equipment (20 Hz). In vacuum, no strain rate influences were found and similar growth rates and threshold stress intensities were measured at both frequencies. In ambient air, threshold stress intensities were similar at 20 Hz and 20 kHz and were 53 –62% of the respective values measured in vacuum. Above threshold, fatigue crack growth rates at ultrasonic frequency are slower (at R = –1) or similar (at R = 0.5) to growth rates at 20 Hz. Ultrasonic fracture mechanics tests in Ti-6Al-4V at load ratios R = 0.1, R = 0.5 and R = 0.8 in ambient air delivered threshold values similar to cycling frequency 50 Hz, whereas growth rates above threshold are approximately a factor of 3 higher at 20 kHz. The compressive part of a load cycle under fully reversed loading condition causes additional fatigue damage, and the maximum stress intensity factor at threshold is lower at R = –1 than at R = 0.05 or R = 0.1.


Dedicated to Professor Dr. Otmar Vöhringer on the occasion of his 65th birthday



Prof. Stefanie Tschegg Türkenschanzstr. 18, A-1180 Vienna, Austria Tel.: +43 1 4705 820-13 Fax: +43 1 4705 820-60

References

[1] H. Mayer: Int. Mater. Rev. 44 (1999) 1.10.1179/imr.1999.44.1.1Search in Google Scholar

[2] R. Mitsche, S. Stanzl, D.G. Burkert: wissenschaftlicher Film (1973) 3.Search in Google Scholar

[3] S. Stanzl, R. Mitsche, in: D.M.R. Taplin (Ed.), Proc. ICF 4,Waterloo, Canada (1977) 749.10.1016/B978-0-08-022140-3.50022-7Search in Google Scholar

[4] S. Stanzl: Ultrasonics 19 (1981) 269.10.1016/0041-624X(81)90017-2Search in Google Scholar

[5] S.E. Stanzl-Tschegg, in: G. Lütjering, H. Nowack (Eds.), Proc. 6th Int. Fatigue Congress, Berlin, Elsevier, Amsterdam (1996) 1887.Search in Google Scholar

[6] H.R. Mayer, S.E. Stanzl-Tschegg, D.M. Tan: Eng. Fract. Mech. 45 (1993) 487.10.1016/0013-7944(93)90255-QSearch in Google Scholar

[7] T. Wu, C. Bathias: Eng. Fract. Mech. 47 (1994) 683.10.1016/0013-7944(94)90159-7Search in Google Scholar

[8] D. Taylor, J.F. Knott, in: D.M.R. Taplin, T.R. Rao, J.F. Knott, R. Dubey (Eds.), Proc. 6th Int. Conf. Fract., New Delhi, Pergamon Press, Oxford (1984) 1759.10.1016/B978-1-4832-8440-8.50170-8Search in Google Scholar

[9] H. Sakamoto, S. Takezono: Eng. Fract. Mech. 31 (1988) 463.10.1016/0013-7944(88)90088-4Search in Google Scholar

[10] Y.-S. Shih, J.-J. Chen: Nucl. Eng. Design 191 (1999) 225.10.1016/S0029-5493(99)00144-2Search in Google Scholar

[11] Y.M. Baik, K.S. Kim: Int. J. Fatigue 23 (2001) 417.10.1016/S0142-1123(00)00109-2Search in Google Scholar

[12] K. Makhlouf, J.W. Jones: Int. J. Fatigue 16 (1993) 163.10.1016/0142-1123(93)90173-NSearch in Google Scholar

[13] M.O. Speidel, S. Stanzl, E. Tschegg: Z. Werkstofftech. 11 (1980) 305.10.1002/mawe.19800110905Search in Google Scholar

[14] K.H. Bowe, E. Hornbogen, S.E. Stanzl: Z. Werkstofftech. 16 (1985) 333.10.1002/mawe.19850161004Search in Google Scholar

[15] E.K. Tschegg, R.O. Ritchie, E. Stanzl, in: J. Bäcklund, A.F. Blom, C.J. Beevers (Eds.), Proc. Int. Conf. on Fatigue Thresholds, Stockholm, EMAS, Warley, U. K. (1981) 99.Search in Google Scholar

[16] P. Lukás, L. Kunz, Z. Knésl, B. Weiss, R. Stickler: Mater. Sci. Eng. 70 (1985) 91.10.1016/0025-5416(85)90270-8Search in Google Scholar

[17] S.E. Stanzl, E.K. Tschegg, in: J.C. Lewis, G. Sines (Eds.), Fracture Mechanics: 14th Symposium-Vol. II: Testing and Applications, ASTM, Philadelphia, PA, ASTM STP 791 (1984) 3.Search in Google Scholar

[18] W. Hoffelner, in: J.M.Wells, O. Buck, L.D. Roth, J.K. Tien (Eds.), Proc. 1st Int. Conf. on Fatigue and Corrosion Fatigue up to Ultrasonic Frequencies, The Metall. Soc. of AIME, Philadelphia, PA (1982) 461.Search in Google Scholar

[19] C. Bathias, in: J.C. Newman, R.S. Piascik (Eds.), Fatigue Crack Growth Thresholds, Endurance Limits, and Design, Am. Soc. Test. Mater., West Conshohocken, ASTM STP 1372 (2000) 135.10.1520/STP13431SSearch in Google Scholar

[20] F.J. Bradshaw, C. Wheeler: Int. J. Fract. Mech. 5 (1969) 255.10.1007/BF00190956Search in Google Scholar

[21] R.P. Wei: Eng. Fract. Mech. 1 (1970) 633.10.1016/0013-7944(70)90004-4Search in Google Scholar

[22] J. Petit, J.d. Fouquet, G. Henaff, in: A. Carpinteri (Ed.), Handbook of Fatigue Crack Propagation in Metallic Structures, Elsevier, Amsterdam, 2 (1994) 1159.10.1016/B978-0-444-81645-0.50010-XSearch in Google Scholar

[23] J. Lankford, D.L. Davidson: Acta Metall. 31 (1983) 1273.10.1016/0001-6160(83)90189-XSearch in Google Scholar

[24] D.L. Davidson, J. Lankford: Fatigue Fract. Eng. Mater. Struct. 6 (1983) 241.10.1111/j.1460-2695.1983.tb00340.xSearch in Google Scholar

[25] A.J. McEvily, J.L. Gonzalez –Velazquez: Met. Trans. A 23 (1992) 2211.10.1007/BF02646014Search in Google Scholar

[26] R.E. Ricker, D.J. Duquette: Met. Trans. A 19 (1988) 1775.10.1007/BF02645146Search in Google Scholar

[27] R.P. Wei, P.S. Gao, G. Hart, T.W. Weir, G.W. Simmons: Met. Trans. A 11 (1980) 151.10.1007/BF02700451Search in Google Scholar

[28] S.P. Lynch: Acta Metall. 36 (1988) 2639.10.1016/0001-6160(88)90113-7Search in Google Scholar

[29] G. Henaff, K. Marchal, J. Petit: Acta Metall. 43 (1995) 2931.10.1016/0956-7151(95)00002-DSearch in Google Scholar

[30] R.P. Wei, in: I.M. Bernstein, A.W. Thompson (Eds.), Hydrogen Effects in Metals, TMS, Warrendale, PA (1980) 677.Search in Google Scholar

[31] N.J.H. Holroyd, D. Hardie: Corrosion Sci. 23 (1983) 527.10.1016/0010-938X(83)90117-8Search in Google Scholar

[32] S.E. Stanzl-Tschegg, H.R. Mayer, E.K. Tschegg: Mater. Sci. Eng. A 147 (1991) 45.10.1016/0921-5093(91)90803-USearch in Google Scholar

[33] H. Mayer, M. Papakyriacou, R. Pippan, S. Stanzl-Tschegg: Mater. Sci. Eng. A 314 (2001) 51.10.1016/S0921-5093(00)01913-4Search in Google Scholar

[34] M. Papakyriacou, H. Mayer, U. Fuchs, S.E. Stanzl-Tschegg, R.P. Wei: Fatigue Fract. Engng. Mater. Struct. 25 (2002) 795.10.1046/j.1460-2695.2002.00571.xSearch in Google Scholar

[35] B. Holper, H. Mayer, A.K. Vasudevan, S.E. Stanzl-Tschegg: Int. J. Fatigue 25 (2003) 397.10.1016/S0142-1123(02)00163-9Search in Google Scholar

[36] B.L. Boyce, R.O. Ritchie: Eng. Fract. Mech. 68 (2001) 129.10.1016/S0013-7944(00)00099-0Search in Google Scholar

[37] S.E. Stanzl, M. Czegley, H.R. Mayer, E.K. Tschegg, in: R.P. Wei, R.P. Gangloff (Eds.), Fracture Mechanics: Perspectives and Directions, ASTM, Philadelphia, PA, STP 1020 (1989) 479.10.1520/STP18839SSearch in Google Scholar

[38] ASTM Designation E647-00: Standard Test Method for Measurement of Fatigue Crack Growth Rates (2000).Search in Google Scholar

[39] M.A. Moshier, T. Nicolas, B.M. Hillberry: Int. J. Fatigue 23 (2001) 253.10.1016/S0142-1123(01)00118-9Search in Google Scholar

[40] C. Laird, P. Charsley, in: J.M. Wells, O. Buck, L.D. Roth, J.K. Tien (Eds.), Proc. 1st Int. Conf. on Fatigue and Corrosion Fatigue up to Ultrasonic Frequencies, Philadelphia, The Metall. Soc. of AIME, Philadelphia, PA (1982) 187.Search in Google Scholar

[41] M.J. Caton: Ph. D. Thesis, University of Michigan, Ann Arbor, MI (2001).Search in Google Scholar

[42] S.E. Stanzl-Tschegg, H.R. Mayer: Int. J. Fatigue 23 (2001) 231.10.1016/S0142-1123(01)00167-0Search in Google Scholar

[43] J. Carstensen, H. Mayer, P. Bronsted: Fatigue Fract. Eng. Mater. Struct. 25 (2002) 837.10.1046/j.1460-2695.2002.00554.xSearch in Google Scholar

[44] M. Gao, P.S. Pao, R.P. Wei: Met. Trans. A 19 (1988) 1739.10.1007/BF02645142Search in Google Scholar

[45] M.R. Achter: Script. Metall. 2 (1968) 525.10.1016/0036-9748(68)90187-7Search in Google Scholar

[46] J.A. Hines, G. Lütjering: Fatigue Fract. Eng. Mater. Struct. 22 (1999) 657.10.1046/j.1460-2695.1999.00217.xSearch in Google Scholar

[47] R.J.H. Wanhill: Corrosion-NACE 30 (1974) 28.10.5006/0010-9312-30.1.28Search in Google Scholar

[48] D.B. Dawson, R.M. Pelloux: Metall. Trans. 5 (1974) 723.10.1007/BF02644669Search in Google Scholar

[49] W. Elber: Eng. Fract. Mech. 2 (1970) 37.10.1016/0013-7944(70)90028-7Search in Google Scholar

[50] T. Ogawa, K. Tokaji, K. Ohya: Fatigue Fract. Eng. Mater. Struct. 16 (1993) 973.10.1111/j.1460-2695.1993.tb00132.xSearch in Google Scholar

Received: 2002-11-01
Published Online: 2022-02-05

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. On the dislocation mechanisms of dynamic strain ageing in fatigued plain carbon steels
  6. Effect of the γ volume fraction on the creep strength of Ni-base superalloys
  7. Auswirkung von Ausscheidungen auf das bestrahlungsinduzierte Schwellverhalten und die Hochtemperaturversprödung in dem austenitischen Stahl X10 CrNiMoTiB 15 15
  8. Fatigue life and cyclic deformation behaviour of quenched and tempered steel AISI 4140 at two-step stress- and total-strain-controlled push–pull loading
  9. Untersuchungen zur Anrisslebensdauervorhersage gekerbter Proben mit dem örtlichen Konzept am Beispiel des Stahls Cm15
  10. Bewertung des Ermüdungsverhaltens von Radstählen anhand von Dehnungs-, Temperatur- und Widerstandsmessungen
  11. On the nature of internal interfaces in tempered martensite ferritic steels
  12. Ermittlung von Grenzformänderungskurven an laser- und elektronenstrahlgeschweißten Stahlblechplatinen
  13. Point defects, precipitates and the strength anomaly in ordered Fe–Al alloys
  14. Isothermal high-temperature fatigue behaviour of a near-γ titanium aluminide alloy
  15. Slow fatigue crack growth in 2024-T3 and Ti-6Al-4V at low and ultrasonic frequency
  16. Structural evolution during the cycling of NiTi shape memory alloys
  17. Phase transformations due to isochronal annealing of Mg – rare earth – Sc–Mn squeeze cast alloys
  18. Isothermal strain-controlled quasi-static and cyclic deformation behavior of magnesium wrought alloy AZ31
  19. Microstructure of die-cast alloys Mg–Zn–Al(–Ca): a study by electron microscopy and small-angle neutron scattering
  20. TEM study of the dislocation structure at the transition from discontinuous to viscous glide in Cu–Al and Cu–Mn alloys at elevated temperatures
  21. Application of electron backscatter diffraction in the SEM to textural problems of coated high-temperature superconductors
  22. Oxide dispersion-strengthened silver: manufacturing and properties
  23. Integrative finite element simulation of the rolling of Al alloys with coupled dislocation density and texture models
  24. Microstructure, surface topography and mechanical properties of slip cast and powder injection moulded microspecimens made of zirconia
  25. Thermisch leitfähig modifizierte Funktionskunststoffe
  26. Tailoring nanocrystalline materials towards potential applications
  27. High-strength Cu–Ti-rich bulk metallic glasses and nano-composites
  28. Nanoskalige Schutzschichten für hochbeanspruchte Werkzeuge und Bauteile
  29. Prediction of the critical conditions for dynamic recrystallization in metals
  30. Notifications/Mitteilungen
  31. Personal/Personelles
  32. Conferences/Konferenzen
Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0095/html
Scroll to top button