Home High-strength Cu–Ti-rich bulk metallic glasses and nano-composites
Article
Licensed
Unlicensed Requires Authentication

High-strength Cu–Ti-rich bulk metallic glasses and nano-composites

  • Mariana Calin , Jürgen Eckert EMAIL logo and Ludwig Schultz
Published/Copyright: February 5, 2022
Become an author with De Gruyter Brill

Abstract

Cu47Ti34Zr11Ni8, Cu47Ti33Zr11Ni8Fe1 and Cu47Ti33Zr11Ni8Si1 bulk glassy alloys were prepared by injection copper mold casting. Mechanical properties, glass-forming ability, thermal stability and microstructural characteristics of as-cast rods were investigated. Calorimetric studies indicate a beneficial role of small Si or Fe addition on the thermal stability of Cu–Ti – Zr –Ni bulk glassy alloys. Compression tests reveal fracture strengths of 2040 to 2190 MPa, Young’s moduli of 100 to 109 GPa and elastic strains up to 2.4 %. The Si-containing glassy alloy exhibits a plastic elongation of 2.2%. The significant increase in plasticity observed for the Si-containing alloy is due to a special bimodal composite structure consisting of nano-scaled Cu crystals homogeneously dispersed in the bulk metallic glass matrix. The increase of the global plasticity can be explained by the formation of multiple shear bands that make the glassy alloy resistant to crack propagation.

Abstract

Cu47Ti34Zr11Ni8, Cu47Ti33Zr11Ni8Fe1 und Cu47Ti33Zr11Ni8Si1 massivglasbildende Legierungen wurden durch langsames Abkühlen in eine Kupferkokille hergestellt. Die mechanischen Eigenschaften, die Glasbildungsfähigkeit, die thermische Stabilität sowie die Mikrostruktur der gegossenen Stäbe wurden mittels unterschiedlicher Methoden charakterisiert. Kalorimetrische Untersuchungen belegen den günstigen Einfluss kleiner Zusätze von Si oder Fe hinsichtlich der thermischen Stabilität der Cu–Ti – Zr – Ni-Massivgläser. Druckversuche bei Raumtemperatur ergeben Bruchfestigkeiten von 2040 bis 2190 MPa, Elastizitätsmoduli im Bereich von 100 bis 109 GPa sowie einen elastischen Bereich von bis zu 2.4%. Das Si-haltigeMassivglas weist eine plastische Verformung von 2.2% vor dem Bruch auf. Die für die Si-haltige Legierung beobachtete ausgeprägte Plastizität ist durch eine spezielle bimodale Komposit-Struktur aus nanoskaligen Cu-Ausscheidungen, die homogen in der massivglasbildenden Matrix verteilt vorliegen, bedingt. Der Anstieg der plastischen Verformbarkeit lässt sich auf die Bildung einer Vielzahl von Scherbändern zurückführen, die den Rissfortschritt in der metallischen Glas-Matrix behindern.


Dedicated to Professor Dr. Otmar Vöhringer on the occasion of his 65th birthday



Prof. Dr.-Ing. J. Eckert IFW Dresden, Institut für Metallische Werkstoffe P.O. Box 270016, D-01171, Dresden, Germany Tel.: +49 351 4659 602 Fax: +49 351 4659 541

  1. The authors thank H. Grahl, A. Güth, M. Stoica, C. Mickel, S. Schinnerling, H.-J. Klauß, H. Kempe, S. Müller and S. Kuszinski for technical assistance. Thanks are also extended to the Saxonian Ministry for Science and Art for financial support.

References

[1] A. Peker, W.L. Johnson: Appl. Phys. Lett. 63 (1993) 2342.10.1063/1.110520Search in Google Scholar

[2] C. Gilbert, R.O. Ritchie, W.L. Johnson: Appl. Phys. Lett. 71 (1997) 476.10.1063/1.119610Search in Google Scholar

[3] A. Inoue: Bulk Amorphous Alloys, Trans Tech Publications Ltd, Uetikon-Zürich (1998).10.1007/s11661-998-0001-9Search in Google Scholar

[4] A.L. Greer: Curr. Opin. Solid State & Mater. Sci. 2 (1997) 412.10.1016/S1359-0286(97)80081-2Search in Google Scholar

[5] A. Inoue, M. Koshiba, T. Zhang, A. Makino: J. Appl. Phys. 83 (1998) 1967.10.1063/1.366923Search in Google Scholar

[6] W.L. Johnson: Mater. Sci. Forum 225/227 (1996) 35.10.4028/www.scientific.net/MSF.225-227.35Search in Google Scholar

[7] A. Leonhard, L.Q. Xing, M. Heilmaier, A. Gebert, J. Eckert, L. Schultz: Nanostructured Mater. 10 (1998) 805.10.1016/S0965-9773(98)00117-2Search in Google Scholar

[8] H. Choi-Yim, R. Busch, U. Köster, W.L. Johnson: Acta Mater. 47 (1999) 2455.10.1016/S1359-6454(99)00103-2Search in Google Scholar

[9] C. Fan, C. Li, A. Inoue, V. Haas: Phys. Rev. B 61 (2000) R3761.10.1103/PhysRevB.61.R3761Search in Google Scholar

[10] Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto: Appl. Phys. Lett. 69 (1996) 1208.10.1063/1.117413Search in Google Scholar

[11] R. Doglione, S. Spriano, L. Battezzati: Nanostructured Mater. 8 (1997) 447.10.1016/S0965-9773(97)00188-8Search in Google Scholar

[12] A. Gebert, J. Eckert, L. Schultz: Acta Mater. 46 (1998) 5475.10.1016/S1359-6454(98)00187-6Search in Google Scholar

[13] J. Eckert, M. Seidel, A. Kübler, U. Klement, L. Schultz: Scripta Mater. 38 (1998) 595.10.1016/S1359-6462(97)00517-4Search in Google Scholar

[14] C. Moelle, I.R. Lu, A. Sagel, R.K. Wunderlich, J.H. Perepezko, H.J. Fecht: Mater. Sci. Forum 269/272 (1998) 47.10.4028/www.scientific.net/MSF.269-272.47Search in Google Scholar

[15] S. Deledda, J. Eckert, L. Schultz: Scripta Mater. 46 (2002) 31.10.1016/S1359-6462(01)01191-5Search in Google Scholar

[16] R.B. Dandliker, R.D. Conner, W.L. Johnson: J. Mater. Sci. 13 (1998) 2896.10.1557/JMR.1998.0396Search in Google Scholar

[17] C.C. Hays, C.P. Kim, W.L. Johnson: Phys. Rev. Lett. 184 (2000) 2901.10.1103/PhysRevLett.84.2901Search in Google Scholar

[18] U. Kühn, J. Eckert, N. Mattern, L. Schultz: Appl. Phys. Lett. 80 (2002) 2478.10.1063/1.1467707Search in Google Scholar

[19] K. Amiya, N. Nishiyama, A. Inoue, T. Masumoto: Mater. Sci. Eng. 179–180 (1994) 692.10.1016/0921-5093(94)90294-1Search in Google Scholar

[20] X.H. Lin, W.L. Johnson: J. Appl. Phys. 78 (1995) 6514.10.1063/1.360537Search in Google Scholar

[21] E.S. Park, H.K. Lim, W.T. Kim, D.H. Kim: J. Non-Cryst. Solids 298 (2002) 15.10.1016/S0022-3093(01)01047-XSearch in Google Scholar

[22] T. Zhang, A. Inoue: Mater. Trans. JIM, 39 (1998) 1001.10.2320/matertrans1989.39.1001Search in Google Scholar

[23] D.H. Bae, H.K. Lim, S.H. Kim, D.J. Kim, W.T. Kim: Acta Mater. 50 (2002) 1749.10.1016/S1359-6454(02)00024-1Search in Google Scholar

[24] H. Choi-Yim, R. Busch, W.L. Johnson: J. Appl. Phys. 12 (1998) 7993.10.1063/1.367981Search in Google Scholar

[25] S.C. Glade, J.F. Löffler, S. Bossuyt, W.L. Johnson: J. Appl. Phys. 89 (2001) 1573.10.1063/1.1332089Search in Google Scholar

[26] F. Spaepen, D. Turnbull: Rev. Phys. Chem. 35 (1984) 241.10.1146/annurev.pc.35.100184.001325Search in Google Scholar

[27] A. Inoue: Acta Mater. 48 (2000) 279.10.1016/S1359-6454(99)00300-6Search in Google Scholar

[28] M.F. Ashby, D.R.H. Jones: Engineering Materials, Pergamon, Oxford (1980).Search in Google Scholar

[29] H. Heller, in: R.W. Cahn, P. Haasen, E.J. Kramer (Eds.), Materials Science and Technology Vol. 8, VCH, Weinheim (1996) 277.Search in Google Scholar

[30] A.L. Greer, in: E. Ma, B. Fultz, R. Shull, J. Morral, P. Nash (Eds.), Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, The Minerals, Metals and Materials Society, Warrendale, PA (1997) 3.Search in Google Scholar

[31] S.Z. Bokshtein, S.T. Kishkin, I.L. Svetvlow: Soviet Phys. Solid State 4 (1963) 1272.Search in Google Scholar

[32] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka: Acta Mater. 49 (2001) 2645.10.1016/S1359-6454(01)00181-1Search in Google Scholar

Received: 2002-10-15
Published Online: 2022-02-05

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. On the dislocation mechanisms of dynamic strain ageing in fatigued plain carbon steels
  6. Effect of the γ volume fraction on the creep strength of Ni-base superalloys
  7. Auswirkung von Ausscheidungen auf das bestrahlungsinduzierte Schwellverhalten und die Hochtemperaturversprödung in dem austenitischen Stahl X10 CrNiMoTiB 15 15
  8. Fatigue life and cyclic deformation behaviour of quenched and tempered steel AISI 4140 at two-step stress- and total-strain-controlled push–pull loading
  9. Untersuchungen zur Anrisslebensdauervorhersage gekerbter Proben mit dem örtlichen Konzept am Beispiel des Stahls Cm15
  10. Bewertung des Ermüdungsverhaltens von Radstählen anhand von Dehnungs-, Temperatur- und Widerstandsmessungen
  11. On the nature of internal interfaces in tempered martensite ferritic steels
  12. Ermittlung von Grenzformänderungskurven an laser- und elektronenstrahlgeschweißten Stahlblechplatinen
  13. Point defects, precipitates and the strength anomaly in ordered Fe–Al alloys
  14. Isothermal high-temperature fatigue behaviour of a near-γ titanium aluminide alloy
  15. Slow fatigue crack growth in 2024-T3 and Ti-6Al-4V at low and ultrasonic frequency
  16. Structural evolution during the cycling of NiTi shape memory alloys
  17. Phase transformations due to isochronal annealing of Mg – rare earth – Sc–Mn squeeze cast alloys
  18. Isothermal strain-controlled quasi-static and cyclic deformation behavior of magnesium wrought alloy AZ31
  19. Microstructure of die-cast alloys Mg–Zn–Al(–Ca): a study by electron microscopy and small-angle neutron scattering
  20. TEM study of the dislocation structure at the transition from discontinuous to viscous glide in Cu–Al and Cu–Mn alloys at elevated temperatures
  21. Application of electron backscatter diffraction in the SEM to textural problems of coated high-temperature superconductors
  22. Oxide dispersion-strengthened silver: manufacturing and properties
  23. Integrative finite element simulation of the rolling of Al alloys with coupled dislocation density and texture models
  24. Microstructure, surface topography and mechanical properties of slip cast and powder injection moulded microspecimens made of zirconia
  25. Thermisch leitfähig modifizierte Funktionskunststoffe
  26. Tailoring nanocrystalline materials towards potential applications
  27. High-strength Cu–Ti-rich bulk metallic glasses and nano-composites
  28. Nanoskalige Schutzschichten für hochbeanspruchte Werkzeuge und Bauteile
  29. Prediction of the critical conditions for dynamic recrystallization in metals
  30. Notifications/Mitteilungen
  31. Personal/Personelles
  32. Conferences/Konferenzen
Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0107/html
Scroll to top button