Startseite Entropy Generation and Activation Energy Impact on Radiative Flow of Viscous Fluid in Presence of Binary Chemical Reaction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Entropy Generation and Activation Energy Impact on Radiative Flow of Viscous Fluid in Presence of Binary Chemical Reaction

  • M. Ijaz Khan EMAIL logo , Salman Ahmad , T. Hayat und A. Alsaedi
Veröffentlicht/Copyright: 25. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The main theme of this paper is to investigate entropy generation analysis for unsteady three-dimensional flow of viscous (Newtonian) fluid between two horizontal parallel plates. Lower plate is porous and stretching while upper plate squeezed downward. Further effects of nonlinear thermal radiation, viscous dissipation, heat source/sink and activation energy are accounted. Entropy generation rate calculated in terms of thermal radiation, fluid diffusion and fluid friction. Transformations procedure used lead to reduction of PDE’s into ordinary ones. Built-in-Shooting technique is used for the computational analysis. Impacts of different flow variables on temperature, velocity, concentration, volumetric entropy generation and Bejan number are discussed and presented through graphs. Temperature and concentration gradient are discussed numerically. It is examined from obtained results that velocity of liquid particle decays through larger estimation of squeezing parameter. It is also examined that temperature distribution enhances for higher estimation of radiative heat flux. Moreover temperature and concentration gradient increase for larger squeezing parameter.

References

Bejan, A. 1980. “Second Law Analysis in Heat Transfer.” Energy 5: 720–732.10.1016/0360-5442(80)90091-2Suche in Google Scholar

Dalir, N., M. Dehsara, and S. S. Nourazar. 2015. “Entropy Analysis for Magnetohydrodynamic Flow and Heat Transfer of a Jeffrey Nanofluid Over a Stretching Sheet.” Energy 79: 351–362.10.1016/j.energy.2014.11.021Suche in Google Scholar

Farooq, M., S. Ahmad, M. Javed, and A. Anjum. 2017. “Analysis of Cattaneo-Christov Heat and Mass Fluxes in the Squeezed Flow Embedded in Porous Medium with Variable Mass Diffusivity.” Results in Physics 7: 3788–3796.10.1016/j.rinp.2017.09.025Suche in Google Scholar

Farooq, M., M. I. Khan, M. Waqas, T. Hayat, A. Alsaedi, and M. I. Khan. 2016. “MHD Stagnation Point Flow of Viscoelastic Nanofluid with Non-linear Radiation Effects.” Journal of Molecular Liquids 221: 1097–1103.10.1016/j.molliq.2016.06.077Suche in Google Scholar

Fusi, L., A. Farina, and F. Rosso. 2016. “Squeeze Flow of a Bingham-Type Fluid with Elastic Core.” International Journal of Non-Linear Mechanics 78: 59–65.10.1016/j.ijnonlinmec.2015.10.004Suche in Google Scholar

Grimm, R. J. 1976. “Squeezing Flows of Newtonian Liquid Films, an Analysis Including Fluid Inertia.” Applied Scientific Research 32: 149–166.10.1007/BF00383711Suche in Google Scholar

Guo, J., M. Xu, J. Cai, and X. Huai. 2011. “Viscous Dissipation Effect on Entropy Generation in Curved Square Microchannels.” Energy 36: 5416–5423.10.1016/j.energy.2011.06.060Suche in Google Scholar

Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2017a. “Non-Darcy Forchheimer Flow of Ferromagnetic Second Grade Fluid.” Results Physics 7: 3419–3424.10.1016/j.rinp.2017.08.041Suche in Google Scholar

Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2018a. “A Frame Work for Heat Generation/Absorption and Modified Homogeneous-Heterogeneous Reaction in Flow Based on Non-Darcy-Forchheimer Medium. Nuclear Engineering and Technology (In press).10.1016/j.net.2018.01.021Suche in Google Scholar

Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2018b. “Exploring Magnetic Dipole Contribution on Radiative Flow of Ferromagnetic Williamson Fluid.” Results Physics 8: 545–551.10.1016/j.rinp.2017.11.040Suche in Google Scholar

Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2018c. “Modeling and Analyzing Flow of Third Grade Nanofluid Due to Rotating Stretchable Disk with Chemical Reaction and Heat Source.” Physica B: Condensed Matter 537: 116–126.10.1016/j.physb.2018.01.052Suche in Google Scholar

Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2018d. “Simulation of Ferromagnetic Nanomaterial Flow of Maxwell Fluid.” Results Physics 8: 34–40.10.1016/j.rinp.2017.11.021Suche in Google Scholar

Hayat, T., M. I. Khan, M. Farooq, A. Alsaedi, and M. I. Khan. 2017b. “Thermally Stratified Stretching Flow with Cattaneo-Christov Heat Flux.” International Journal of Heat and Mass Transfer 106: 289–294.10.1016/j.ijheatmasstransfer.2016.10.071Suche in Google Scholar

Hayat, T., M. I. Khan, M. Farooq, A. Alsaedi, and T. Yasmeen. 2017c. “Impact of Marangoni Convection in the Flow of Carbon–Water Nanofluid with Thermal Radiation.” International Journal of Heat and Mass Transfer 106: 810–815.10.1016/j.ijheatmasstransfer.2016.08.115Suche in Google Scholar

Hayat, T., M. I. Khan, M. Farooq, T. Yasmeen, and A. Alsaedi. 2016a. “Water-Carbon Nanofluid Flow with Variable Heat Flux by a Thin Needle.” Journal of Molecular Liquids 224: 786–791.10.1016/j.molliq.2016.10.069Suche in Google Scholar

Hayat, T., M. I. Khan, M. Tamoor, M. Waqas, and A. Alsaedi. 2017d. “Numerical Simulation of Heat Transfer in MHD Stagnation Point Flow of Cross Fluid Model Towards a Stretched Surface.” Results Physics 7: 1824–1827.10.1016/j.rinp.2017.05.022Suche in Google Scholar

Hayat, T., M. I. Khan, S. Qayyum, and A. Alsaedi. 2018e. “Entropy Generation in Flow with Silver and Copper Nanoparticles.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 539: 335-346.10.1016/j.colsurfa.2017.12.021Suche in Google Scholar

Hayat, T., K. Muhammad, M. Farooq, and A. Alsaedi. 2016b. “Squeezed Flow Subject to Cattaneo-Christov Heat Flux and Rotating Frame.” Journal of Molecular Liquids 220: 216–222.10.1016/j.molliq.2016.01.099Suche in Google Scholar

Hayat, T., H. Nazar, M. Imtiaz, A. Alsaedi, and M. Ayub. 2017e. “Axisymmetric Squeezing Flow of Third Grade Fluid in Presence of Convective Conditions.” Chinese Journal of Physics 55: 738–754.10.1016/j.cjph.2017.02.005Suche in Google Scholar

Hayat, T., M. Rafiq, B. Ahmad, and S. Asghar. 2017f. “Entropy Generation Analysis for Peristaltic Flow of Nanoparticles in a Rotating Frame.” International Journal of Heat and Mass Transfer 108: 1775–1786.10.1016/j.ijheatmasstransfer.2017.01.038Suche in Google Scholar

Hayat, T., S. Ullah, M. I. Khan, and A. Alsaedi. 2018f. “On Framing Potential Features of SWCNTs and MWCNTs in Mixed Convective Flow.” Results Physics 8: 357–364.10.1016/j.rinp.2017.12.017Suche in Google Scholar

Khan, N. B., Z. Ibrahim, M. F. Javed, and M. Jameel. 2017a. “Numerical Investigation of the Vortex-Induced Vibration of an Elastically Mounted Circular Cylinder at High Reynolds Number (Re = 104) and Low Mass Ratio Using the RANS Code. Plos One 12: e0185832.10.1371/journal.pone.0185832Suche in Google Scholar PubMed PubMed Central

Khan, N. B., Z. Ibrahim, and M. F. Javed. “Numerical Investigation of the Vortex-Induced Vibration of an Elastically Mounted Circular Cylinder Having Low Mass Rati Using the RANS Code.” The 2017 Word Congress on Advances in Structural Engineering and Mechanics, (ASEM17) ILSAN (Seoul), Korea.10.1371/journal.pone.0185832Suche in Google Scholar

Khan, N. B., Z. Ibrahim, M. I. Khan, T. Hayat, and M. F. Javed. 2018. “VIV Study of an Elastically Mounted Cylinder Having Low Mass-Damping Ratio Using RANS Model.” International Journal of Heat and Mass Transfer 121: 309–314.10.1016/j.ijheatmasstransfer.2017.12.109Suche in Google Scholar

Khan, N. B., and Z. Ibrahim. 2017. “Numerical Investigation of Vortex-Induced Vibration of an Elastically Mounted Circular Cylinder with One-Degree of Freedom at High Reynolds Number Using Different Turbulent Models, Proceed. Proceedings of the Institution of Mechanical Engineers Part Mhttp://doi.org/10.1177/1475090217751992.Suche in Google Scholar

Khan, M. I., M. Waqas, T. Hayat, and A. Alsaedi. 2017b. “A Comparative Study of Casson Fluid with Homogeneous-Heterogeneous Reactions.” Journal of Colloid and Interface Science 498: 85–90.10.1016/j.jcis.2017.03.024Suche in Google Scholar PubMed

Khan, M. I., M. Waqas, T. Hayat, and A. Alsaedi. 2017c. “A Comparative Study of Casson Fluid with Homogeneous-Heterogeneous Reactions.” Journal of Colloid and Interface Science 498: 85–90.10.1016/j.jcis.2017.03.024Suche in Google Scholar

Li, X., and A. Faghri. 2011 “Local Entropy Generation Analysis on Passive High-Concentration DMFCs (Direct Methanol Fuel Cell) with Different Cell Structures.” Energy 36: 403–414.10.1016/j.energy.2010.10.024Suche in Google Scholar

Munawar, S., A. Mehmood, and A. Ali. 2012. “Three-Dimensional Squeezing Flow in a Rotating Channel of Lower Stretching Porous Wall.” Journal of Computational and Applied Mathematics 64: 1575–1586.10.1016/j.camwa.2012.01.003Suche in Google Scholar

Nouri, D., M. Pasandideh-Fard, M. J. Oboodi, O. Mahian, and A. Z. Sahin. 2018a. “Entropy Generation Analysis of Nanofluid Flow Over a Spherical Heat Source Inside a Channel with Sudden Expansion and Contraction.” International Journal of Heat and Mass Transfer 116: 1036–1043.10.1016/j.ijheatmasstransfer.2017.09.097Suche in Google Scholar

Sheikholeslami, M., D. D. Ganji, and H. R. Ashorynejad. 2013. “Investigation of Squeezing Unsteady Nanofluid Flow Using ADM.” Powder Technology 239: 259–265.10.1016/j.powtec.2013.02.006Suche in Google Scholar

Stefan, M. J. 1874. “Versuch Uber die scheinbare Adhesion.” Akad. Wiss. Math-Natur 69: 713–721.Suche in Google Scholar

Van der Ham, L. V., J. Gross, and S. Kjelstrup. 2011. “Two Performance Indicators for the Characterization of the Entropy Production in A Process Unit.” Energy 36: 3727–3732.10.1016/j.energy.2010.11.012Suche in Google Scholar

Received: 2018-03-02
Revised: 2018-04-04
Accepted: 2018-07-07
Published Online: 2018-08-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2018-0045/html
Button zum nach oben scrollen