Startseite Illuminating the brain-genetically encoded single wavelength fluorescent biosensors to unravel neurotransmitter dynamics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Illuminating the brain-genetically encoded single wavelength fluorescent biosensors to unravel neurotransmitter dynamics

  • Martin Kubitschke und Olivia A. Masseck ORCID logo EMAIL logo
Veröffentlicht/Copyright: 30. Mai 2023

Abstract

Understanding how neuronal networks generate complex behavior is one of the major goals of Neuroscience. Neurotransmitter and Neuromodulators are crucial for information flow between neurons and understanding their dynamics is the key to unravel their role in behavior. To understand how the brain transmits information and how brain states arise, it is essential to visualize the dynamics of neurotransmitters, neuromodulators and neurochemicals. In the last five years, an increasing number of single-wavelength biosensors either based on periplasmic binding proteins (PBPs) or on G-protein-coupled receptors (GPCR) have been published that are able to detect neurotransmitter release in vitro and in vivo with high spatial and temporal resolution. Here we review and discuss recent progress in the development of these sensors, their limitations and future directions.


Corresponding author: Olivia A. Masseck, Synthetic Biology, University of Bremen, 28359 Bremen, Germany, E-mail:

Funding source: DFG MA 4692/6

Funding source: DFG 122679504 - SFB 874

Acknowledgment

We would like to thank Juliana Groß and Kim Renken for their valuable comments and proof reading.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by DFG (Nos. MA 4692/6, 122679504 - SFB 874).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abraham, A.D., Casello, S.M., Schattauer, S.S., Wong, B.A., Mizuno, G.O., Mahe, K., Tian, L., Land, B.B., and Chavkin, C. (2021). Release of endogenous dynorphin opioids in the prefrontal cortex disrupts cognition. Neuropsychopharmacology 46: 2330–2339, https://doi.org/10.1038/s41386-021-01168-2.Suche in Google Scholar PubMed PubMed Central

Ackermann, J., Metternich, J.T., Herbertz, S., and Kruss, S. (2022). Biosensing with fluorescent carbon nanotubes. Angew. Chem. Int. Ed. Engl. 61: e202112372, https://doi.org/10.1002/anie.202112372.Suche in Google Scholar PubMed PubMed Central

Akerboom, J., Calderón, N.C., Tian, L., Wabnig, S., Prigge, M., Tolö, J., Gordus, A., Orger, M.B., Severi, K.E., Macklin, J.J., et al.. (2013). Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, https://doi.org/10.3389/fnmol.2013.00002.Suche in Google Scholar PubMed PubMed Central

Baird, G.S., Zacharias, D.A., and Tsien, R.Y. (1999). Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. 96: 11241–11246, https://doi.org/10.1073/pnas.96.20.11241.Suche in Google Scholar PubMed PubMed Central

Borden, P.M., Zhang, P., Shivange, A.V., Marvin, J.S., Cichon, J., Dan, C., Podgorski, K., Figueiredo, A., Novak, O., Tanimoto, M., et al.. (2020). A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies (preprint). Neuroscience, https://doi.org/10.1101/2020.02.07.939504.Suche in Google Scholar

Broussard, G.J., Liang, R., and Tian, L. (2014). Monitoring activity in neural circuits with genetically encoded indicators. Front. Mol. Neurosci. 7, https://doi.org/10.3389/fnmol.2014.00097.Suche in Google Scholar PubMed PubMed Central

Chen, K.Y.M., Keri, D., and Barth, P. (2020). Computational design of G protein-coupled receptor allosteric signal transductions. Nat. Chem. Biol. 16: 77–86, https://doi.org/10.1038/s41589-019-0407-2.Suche in Google Scholar PubMed

Chen, T.W., Wardill, T., and Sun, Y. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499: 295–300, https://doi.org/10.1038/nature12354.Suche in Google Scholar PubMed PubMed Central

Dai, B., Sun, F., Tong, X., Ding, Y., Kuang, A., Osakada, T., Li, Y., and Lin, D. (2022). Responses and functions of dopamine in nucleus accumbens core during social behaviors. Cell Rep. 40: 111246, https://doi.org/10.1016/j.celrep.2022.111246.Suche in Google Scholar PubMed PubMed Central

Dana, H., Mohar, B., Sun, Y., Narayan, S., Gordus, A., Hasseman, J.P., Tsegaye, G., Holt, G.T., Hu, A., Walpita, D., et al.. (2016). Sensitive red protein calcium indicators for imaging neural activity. Elife 5: e12727, https://doi.org/10.7554/eLife.12727.Suche in Google Scholar PubMed PubMed Central

Deupi, X. and Standfuss, J. (2011). Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr. Opin. Struct. Biol. 21: 541–551, https://doi.org/10.1016/j.sbi.2011.06.002.Suche in Google Scholar PubMed

Díaz‐García, C.M., Lahmann, C., Martínez‐François, J.R., Li, B., Koveal, D., Nathwani, N., Rahman, M., Keller, J.P., Marvin, J.S., Looger, L.L., et al.. (2019). Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor. J. Neurosci. Res. 97: 946–960, https://doi.org/10.1002/jnr.24433.Suche in Google Scholar PubMed PubMed Central

Dinarvand, M., Neubert, E., Meyer, D., Selvaggio, G., Mann, F.A., Erpenbeck, L., and Kruss, S. (2019). Near-infrared imaging of serotonin release from cells with fluorescent nanosensors. Nano Lett. 19: 6604–6611, https://doi.org/10.1021/acs.nanolett.9b02865.Suche in Google Scholar PubMed

Dong, C., Ly, C., Dunlap, L.E., Vargas, M.V., Sun, J., Hwang, I.W., Azinfar, A., Oh, W.C., Wetsel, W.C., Olson, D.E., et al.. (2021). Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184: 2779–2792.e18, https://doi.org/10.1016/j.cell.2021.03.043.Suche in Google Scholar PubMed PubMed Central

Dong, A., He, K., Dudok, B., Farrell, J.S., Guan, W., Liput, D.J., Puhl, H.L., Cai, R., Wang, H., Duan, J., et al.. (2022). A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nat. Biotechnol. 40: 787–798, https://doi.org/10.1038/s41587-021-01074-4.Suche in Google Scholar PubMed PubMed Central

Duffet, L., Kosar, S., Panniello, M., Viberti, B., Bracey, E., Zych, A.D., Radoux-Mergault, A., Zhou, X., Dernic, J., Ravotto, L., et al.. (2022). A genetically encoded sensor for in vivo imaging of orexin neuropeptides. Nat. Methods 19: 231–241, https://doi.org/10.1038/s41592-021-01390-2.Suche in Google Scholar PubMed PubMed Central

Duffet, L., Williams, E.T., Gresch, A., Chen, S., Bhat, M.A., Benke, D., Hartrampf, N., and Patriarchi, T. (2023). Optical tools for visualizing and controlling human GLP-1 receptor activation with high spatiotemporal resolution (preprint). Biochemistry, https://doi.org/10.1101/2023.02.14.528498.Suche in Google Scholar

Edwards, K.A. (2021). Periplasmic-binding protein-based biosensors and bioanalytical assay platforms: advances, considerations, and strategies for optimal utility. Talanta Open 3: 100038, https://doi.org/10.1016/j.talo.2021.100038.Suche in Google Scholar

Feng, J., Zhang, C., Lischinsky, J.E., Jing, M., Zhou, J., Wang, H., Zhang, Y., Dong, A., Wu, Z., Wu, H., et al.. (2019). A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102: 745–761.e8, https://doi.org/10.1016/j.neuron.2019.02.037.Suche in Google Scholar PubMed PubMed Central

Fredriksson, R., Lagerström, M.C., Lundin, L.G., and Schiöth, H.B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63: 1256–1272, https://doi.org/10.1124/mol.63.6.1256.Suche in Google Scholar PubMed

Frommer, W.B., Davidson, M.W., and Campbell, R.E. (2009). Genetically encoded biosensors based on engineered fluorescent proteins. Chem. Soc. Rev. 38: 2833, https://doi.org/10.1039/b907749a.Suche in Google Scholar PubMed PubMed Central

Gloriam, D.E., Fredriksson, R., and Schiöth, H.B. (2007). The G protein-coupled receptor subset of the rat genome. BMC Genom. 8: 338, https://doi.org/10.1186/1471-2164-8-338.Suche in Google Scholar PubMed PubMed Central

Helassa, N., Dürst, C.D., Coates, C., Kerruth, S., Arif, U., Schulze, C., Wiegert, J.S., Geeves, M., Oertner, T.G., and Török, K. (2018). Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc. Natl. Acad. Sci. U. S. A. 115: 5594–5599, https://doi.org/10.1073/pnas.1720648115.Suche in Google Scholar PubMed PubMed Central

Ino, D., Tanaka, Y., Hibino, H., and Nishiyama, M. (2022). A fluorescent sensor for real-time measurement of extracellular oxytocin dynamics in the brain. Nat. Methods 19: 1286–1294, https://doi.org/10.1038/s41592-022-01597-x.Suche in Google Scholar PubMed PubMed Central

Jensen, A.A. and Spalding, T.A. (2004). Allosteric modulation of G-protein coupled receptors. Eur. J. Pharm. Sci. 21: 407–420, https://doi.org/10.1016/j.ejps.2003.11.007.Suche in Google Scholar PubMed

Jing, M., Zhang, P., Wang, G., Feng, J., Mesik, L., Zeng, J., Jiang, H., Wang, S., Looby, J.C., Guagliardo, N.A., et al.. (2018). A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36: 726–737, https://doi.org/10.1038/nbt.4184.Suche in Google Scholar PubMed PubMed Central

Jing, M., Li, Y., Zeng, J., Huang, P., Skirzewski, M., Kljakic, O., Peng, W., Qian, T., Tan, K., Zou, J., et al.. (2020). An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 17: 1139–1146, https://doi.org/10.1038/s41592-020-0953-2.Suche in Google Scholar PubMed PubMed Central

Keller, J.P., Marvin, J.S., Lacin, H., Lemon, W.C., Shea, J., Kim, S., Lee, R.T., Koyama, M., Keller, P.J., and Looger, L.L. (2021). In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. Cell Rep. 35: 109284, https://doi.org/10.1016/j.celrep.2021.109284.Suche in Google Scholar PubMed

Keri, D., Cola, R.B., Kagiampaki, Z., Tommaso, P., and Barth, P. (2021). Computationally-guided tuning of ligand sensitivity in a GPCR-based sensor (preprint). Bioengineering, https://doi.org/10.1101/2021.09.21.461282.Suche in Google Scholar

Kim, H., Nam, M.H., Jeong, S., Lee, H., Oh, S.J., Kim, J., Choi, N., and Seong, J. (2022). Visualization of differential GPCR crosstalk in DRD1-DRD2 heterodimer upon different dopamine levels. Prog. Neurobiol. 213: 102266, https://doi.org/10.1016/j.pneurobio.2022.102266.Suche in Google Scholar PubMed

Kubitschke, M., Müller, M., Wallhorn, L., Pulin, M., Mittag, M., Pollok, S., Ziebarth, T., Bremshey, S., Gerdey, J., Claussen, K.C., et al.. (2022). Next generation genetically encoded fluorescent sensors for serotonin. Nat. Commun. 13: 7525, https://doi.org/10.1038/s41467-022-35200-w.Suche in Google Scholar PubMed PubMed Central

Kruss, S., Hilmer, A.J., Zhang, J., Reuel, N.F., Mu, B., and Strano, M.S. (2013). Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 65: 1933–1950, https://doi.org/10.1016/j.addr.2013.07.015.Suche in Google Scholar PubMed

Labouesse, M.A. and Patriarchi, T. (2021). A versatile GPCR toolkit to track in vivo neuromodulation: not a one-size-fits-all sensor. Neuropsychopharmacology 46: 2043–2047, https://doi.org/10.1038/s41386-021-00982-y.Suche in Google Scholar PubMed PubMed Central

Marvin, J.S., Schreiter, E.R., Echevarría, I.M., and Looger, L.L. (2011). A genetically encoded, high‐signal‐to‐noise maltose sensor. Proteins 79: 3025–3036, https://doi.org/10.1002/prot.23118.Suche in Google Scholar PubMed PubMed Central

Marvin, J.S., Borghuis, B.G., Tian, L., Cichon, J., Harnett, M.T., Akerboom, J., Gordus, A., Renninger, S.L., Chen, T.W., Bargmann, C.I., et al.. (2013). An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10: 162–170, https://doi.org/10.1038/nmeth.2333.Suche in Google Scholar PubMed PubMed Central

Marvin, J.S., Scholl, B., Wilson, D.E., Podgorski, K., Kazemipour, A., Müller, J.A., Schoch, S., Quiroz, F.J.U., Rebola, N., Bao, H., et al.. (2018). Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15: 936–939, https://doi.org/10.1038/s41592-018-0171-3.Suche in Google Scholar PubMed PubMed Central

Marvin, J.S., Shimoda, Y., Magloire, V., Leite, M., Kawashima, T., Jensen, T.P., Kolb, I., Knott, E.L., Novak, O., Podgorski, K., et al.. (2019). A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16: 763–770, https://doi.org/10.1038/s41592-019-0471-2.Suche in Google Scholar PubMed

Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nat. Methods 19: 679–682, https://doi.org/10.1038/s41592-022-01488-1.Suche in Google Scholar PubMed PubMed Central

Mohebi, A., Pettibone, J.R., Hamid, A.A., Wong, J.M.T., Vinson, L.T., Patriarchi, T., Tian, L., Kennedy, R.T., and Berke, J.D. (2019). Dissociable dopamine dynamics for learning and motivation. Nature 570: 65–70, https://doi.org/10.1038/s41586-019-1235-y.Suche in Google Scholar PubMed PubMed Central

Nagai, T., Sawano, A., Park, E.S., and Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. U.S.A. 98: 3197–3202, https://doi.org/10.1073/pnas.051636098.Suche in Google Scholar PubMed PubMed Central

Nakai, J., Ohkura, M., and Imoto, K. (2001). A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19: 137–141, https://doi.org/10.1038/84397.Suche in Google Scholar PubMed

Nakamoto, C., Goto, Y., Tomizawa, Y., Fukata, Y., Fukata, M., Harpsøe, K., Gloriam, D.E., Aoki, K., and Takeuchi, T. (2021). A novel red fluorescence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro. Mol. Brain 14: 173, https://doi.org/10.1186/s13041-021-00882-8.Suche in Google Scholar PubMed PubMed Central

Nasu, Y., Shen, Y., Kramer, L., and Campbell, R.E. (2021). Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 17: 509–518, https://doi.org/10.1038/s41589-020-00718-x.Suche in Google Scholar PubMed

Ozkan, A.D., Gettas, T., Sogata, A., Phaychanpheng, W., Zhou, M., and Lacroix, J.J. (2021). Mechanical and chemical activation of GPR68 probed with a genetically encoded fluorescent reporter. J. Cell Sci. 134: jcs255455, https://doi.org/10.1242/jcs.255455.Suche in Google Scholar PubMed PubMed Central

Patriarchi, T., Cho, J.R., Merten, K., Howe, M.W., Marley, A., Xiong, W.H., Folk, R.W., Broussard, G.J., Liang, R., Jang, M.J., et al.. (2018). Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360: eaat4422, https://doi.org/10.1126/science.aat4422.Suche in Google Scholar PubMed PubMed Central

Patriarchi, T., Mohebi, A., Sun, J., Marley, A., Liang, R., Dong, C., Puhger, K., Mizuno, G.O., Davis, C.M., Wiltgen, B., et al.. (2020). An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 17: 1147–1155, https://doi.org/10.1038/s41592-020-0936-3.Suche in Google Scholar PubMed PubMed Central

Peng, W., Wu, Z., Song, K., Zhang, S., Li, Y., and Xu, M. (2020). Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369: eabb0556, https://doi.org/10.1126/science.abb0556.Suche in Google Scholar PubMed

Qian, T., Wang, H., Wang, P., Geng, L., Mei, L., Osakada, T., Wang, L., Tang, Y., Kania, A., Grinevich, V., et al.. (2023). A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. Nat. Biotechnol., https://doi.org/10.1038/s41587-022-01561-2.Suche in Google Scholar PubMed

Rappleye, M., Gordon-Fennel, A., Castro, D.C., Matarasso, A.K., Zamorano, C.A., Stine, C., Wait, S.J., Lee, J.D., Siebart, J.C., Suko, A., et al.. (2022). Opto-MASS: a high-throughput engineering platform for genetically encoded fluorescent sensors enabling all-optical in vivo detection of monoamines and opioids (preprint). Bioengineering, https://doi.org/10.1101/2022.06.01.494241.Suche in Google Scholar

Rasmussen, S.G.F., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., et al.. (2011). Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477: 549–555, https://doi.org/10.1038/nature10361.Suche in Google Scholar PubMed PubMed Central

Sabatini, B.L. and Tian, L. (2020). Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108: 17–32, https://doi.org/10.1016/j.neuron.2020.09.036.Suche in Google Scholar PubMed

Shivange, A.V., Borden, P.M., Muthusamy, A.K., Nichols, A.L., Bera, K., Bao, H., Bishara, I., Jeon, J., Mulcahy, M.J., Cohen, B., et al.. (2019). Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. J. Gen. Physiol. 151: 738–757, https://doi.org/10.1085/jgp.201812201.Suche in Google Scholar PubMed PubMed Central

Sistemich, L., Galonska, P., Stegemann, J., Ackermann, J., and Kruss, S. (2023). Near-infrared fluorescence lifetime imaging of biomolecules with carbon nanotubes. Angew. Chem., Int. Ed. e202300682, https://doi.org/10.1002/anie.202300682.Suche in Google Scholar PubMed

Sun, F., Zeng, J., Jing, M., Zhou, J., Feng, J., Owen, S.F., Luo, Y., Li, F., Wang, H., Yamaguchi, T., et al.. (2018). A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174: 481–496.e19, https://doi.org/10.1016/j.cell.2018.06.042.Suche in Google Scholar PubMed PubMed Central

Sun, F., Zhou, J., Dai, B., Qian, T., Zeng, J., Li, X., Zhuo, Y., Zhang, Y., Wang, Y., Qian, C., et al.. (2020). Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 17: 1156–1166, https://doi.org/10.1038/s41592-020-00981-9.Suche in Google Scholar PubMed PubMed Central

Tîlmaciu, C.M. and Morris, M.C. (2015). Carbon nanotube biosensors. Front. Chem. 3: 59, https://doi.org/10.3389/fchem.2015.00059.Suche in Google Scholar PubMed PubMed Central

Unger, E.K., Keller, J.P., Altermatt, M., Liang, R., Matsui, A., Dong, C., Hon, O.J., Yao, Z., Sun, J., Banala, S., et al.. (2020). Directed evolution of a selective and sensitive serotonin sensor via machine learning. Cell 183: 1986–2002.e26, https://doi.org/10.1016/j.cell.2020.11.040.Suche in Google Scholar PubMed PubMed Central

Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F., and Babu, M.M. (2013). Molecular signatures of G-protein-coupled receptors. Nature 494: 185–194, https://doi.org/10.1038/nature11896.Suche in Google Scholar PubMed

Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al.. (2001). The sequence of the human genome. Science 291: 1304–1351, https://doi.org/10.1126/science.1058040.Suche in Google Scholar PubMed

Wan, J., Peng, W., Li, X., Qian, T., Song, K., Zeng, J., Deng, F., Hao, S., Feng, J., Zhang, P., et al.. (2021). A genetically encoded sensor for measuring serotonin dynamics. Nat. Neurosci. 24: 746–752, https://doi.org/10.1038/s41593-021-00823-7.Suche in Google Scholar PubMed PubMed Central

Wang, H., Qian, T., Zhao, Y., Zhuo, Y., Wu, C., Osakada, T., Chen, P., Ren, H., Yan, Y., Geng, L., et al.. (2022). A toolkit of highly selective and sensitive genetically encoded neuropeptide sensors (preprint). Neuroscience, https://doi.org/10.1101/2022.03.26.485911.Suche in Google Scholar

Wingler, L.M. and Lefkowitz, R.J. (2020). Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol. 30: 736–747, https://doi.org/10.1016/j.tcb.2020.06.002.Suche in Google Scholar PubMed PubMed Central

Wu, J., Abdelfattah, A.S., Zhou, H., Ruangkittisakul, A., Qian, Y., Ballanyi, K., and Campbell, R.E. (2018). Genetically encoded glutamate indicators with altered color and topology. ACS Chem. Biol. 13: 1832–1837, https://doi.org/10.1021/acschembio.7b01085.Suche in Google Scholar PubMed

Wu, Z., Cui, Y., Wang, H., Song, K., Yuan, Z., Dong, A., Wu, H., Wan, Y., Pan, S., Peng, W., et al.. (2020). A GRAB sensor reveals activity-dependent non-vesicular somatodendritic adenosine release (preprint). Neuroscience, https://doi.org/10.1101/2020.05.04.075564.Suche in Google Scholar

Wu, Z., He, K., Chen, Y., Li, H., Pan, S., Li, B., Liu, T., Xi, F., Deng, F., Wang, H., et al.. (2022a). A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 110: 770–782.e5, https://doi.org/10.1016/j.neuron.2021.11.027.Suche in Google Scholar PubMed

Wu, Z., Lin, D., and Li, Y. (2022b). Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat. Rev. Neurosci. 23: 257–274, https://doi.org/10.1038/s41583-022-00577-6.Suche in Google Scholar PubMed

Wu, Z., Cui, Y., Wang, H., Wu, H., Wan, Y., Li, B., Wang, L., Pan, S., Peng, W., Dong, A., et al.. (2023). Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Proc. Natl. Acad. Sci. U.S.A. 120: e2212387120, https://doi.org/10.1073/pnas.2212387120.Suche in Google Scholar PubMed PubMed Central

Zhang, Y., Rózsa, M., Liang, Y., Bushey, D., Wei, Z., Zheng, J., Reep, D., Broussard, G.J., Tsang, A., Tsegaye, G., et al.. (2023). Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615: 884–891, https://doi.org/10.1038/s41586-023-05828-9.Suche in Google Scholar PubMed PubMed Central

Received: 2023-04-05
Accepted: 2023-05-15
Published Online: 2023-05-30
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2023-0175/html
Button zum nach oben scrollen