Home Schwann cells in neuromuscular in vitro models
Article
Licensed
Unlicensed Requires Authentication

Schwann cells in neuromuscular in vitro models

  • Sarah Janice Hörner ORCID logo EMAIL logo , Nathalie Couturier , Mathias Hafner and Rüdiger Rudolf
Published/Copyright: June 27, 2023

Abstract

Neuromuscular cell culture models are used to investigate synapse formation and function, as well as mechanisms of de-and regeneration in neuromuscular diseases. Recent developments including 3D culture technique and hiPSC technology have propelled their ability to complement insights from in vivo models. However, most cultures have not considered Schwann cells, the glial part of NMJs. In the following, a brief overview of different types of neuromuscular cocultures is provided alongside examples for studies that included Schwann cells. From these, findings concerning the effects of Schwann cells on those cultures are summarized and future lines of research are proposed.


Corresponding author: Sarah Janice Hörner, Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, D-68163 Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, D-69117 Heidelberg, Germany; and Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, D-68163 Mannheim, Germany, E-mail:

Award Identifier / Grant number: 03FH8I02IA

Award Identifier / Grant number: 13FH8I05IA

Award Identifier / Grant number: 13FH8I09IA

Award Identifier / Grant number: INST 874/9-1

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: S.J.H. was funded by a fellowship of the Albert und Anneliese Konanz-Stiftung. This work was funded by the German Federal Ministry of Education and Research (BMBF) as part of the Innovation Partnership M2Aind, projects M2OGA (03FH8I02IA), Drugs4Future (13FH8I05IA), and DrugsData (13FH8I09IA) within the framework Starke Fachhochschulen—Impuls für die Region (FH-Impuls). This work was supported by Deutsche Forschungsgemeinschaft (DFG), grant INST 874/9-1.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Afshar Bakooshli, M., Lippmann, E.S., Mulcahy, B., Iyer, N., Nguyen, C.T., Tung, K., Stewart, B.A., van den Dorpel, H., Fuehrmann, T., Shoichet, M., et al.. (2019). A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. Elife 8: e44530, https://doi.org/10.7554/elife.44530.Search in Google Scholar PubMed PubMed Central

Alhindi, A., Boehm, I., Forsythe, R.O., Miller, J., Skipworth, R.J.E., Simpson, H., Jones, R.A., and Gillingwater, T.H. (2021). Terminal Schwann cells at the human neuromuscular junction. Brain Commun. 3: fcab081, https://doi.org/10.1093/braincomms/fcab081.Search in Google Scholar PubMed PubMed Central

Askanas, V., Kwan, H., Alvarez, R.B., Engel, W.K., Kobayashi, T., Martinuzzi, A., and Hawkins, E.F. (1987). De novo neuromuscular junction formation on human muscle fibres cultured in monolayer and innervated by foetal rat spinal cord: ultrastructural and ultrastructural—cytochemical studies. J. Neurocytol. 16: 523–537, https://doi.org/10.1007/bf01668506.Search in Google Scholar

Barik, A., Li, L., Sathyamurthy, A., Xiong, W.-C., and Mei, L. (2016). Schwann cells in neuromuscular junction formation and maintenance. J. Neurosci. 36: 9770–9781, https://doi.org/10.1523/jneurosci.0174-16.2016.Search in Google Scholar

Carrió, M., Mazuelas, H., Richaud-Patin, Y., Gel, B., Terribas, E., Rosas, I., Jimenez-Delgado, S., Biayna, J., Vendredy, L., Blanco, I., et al.. (2019). Reprogramming captures the genetic and tumorigenic properties of neurofibromatosis type 1 plexiform neurofibromas. Stem Cell Rep. 12: 411–426, https://doi.org/10.1016/j.stemcr.2019.01.001.Search in Google Scholar PubMed PubMed Central

Chapron, J., de La Porte, S., Delépine, L., and Koenig, J. (1997). Schwann cells modify expression of acetylcholinesterase and butyrylcholinesterase at rat neuromuscular junctions. Eur. J. Neurosci. 9: 260–270, https://doi.org/10.1111/j.1460-9568.1997.tb01396.x.Search in Google Scholar PubMed

Darabid, H., St-Pierre-See, A., and Robitaille, R. (2018). Purinergic-dependent glial regulation of synaptic plasticity of competing terminals and synapse elimination at the neuromuscular junction. Cell Rep. 25: 2070–2082.e6, https://doi.org/10.1016/j.celrep.2018.10.075.Search in Google Scholar PubMed

Faustino Martins, J.-M., Fischer, C., Urzi, A., Vidal, R., Kunz, S., Ruffault, P.-L., Kabuss, L., Hube, I., Gazzerro, E., Birchmeier, C., et al.. (2020). Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell 26: 172–186.e6, https://doi.org/10.1016/j.stem.2019.12.007.Search in Google Scholar PubMed

Feng, Z. and Ko, C.-P. (2008). Schwann cells promote synaptogenesis at the neuromuscular junction via transforming growth factor-beta1. J. Neurosci. 28: 9599–9609, https://doi.org/10.1523/jneurosci.2589-08.2008.Search in Google Scholar PubMed PubMed Central

Guettier-Sigrist, S., Coupin, G., Warter, J.M., and Poindron, P. (2000). Cell types required to efficiently innervate human muscle cells in vitro. Exp. Cell Res. 259: 204–212, https://doi.org/10.1006/excr.2000.4968.Search in Google Scholar PubMed

Harrison, R. (1959). The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. Exp. Zool. 142: 5–73, https://doi.org/10.1002/jez.1401420103.Search in Google Scholar PubMed

Heredia, D.J., Feng, C.-Y., Hennig, G.W., Renden, R.B., and Gould, T.W. (2018). Activity-induced Ca2+ signaling in perisynaptic Schwann cells of the early postnatal mouse is mediated by P2Y1 receptors and regulates muscle fatigue. Elife 7: e30839, https://doi.org/10.7554/elife.30839.Search in Google Scholar PubMed PubMed Central

Hörner, S.J., Couturier, N., Bruch, R., Koch, P., Hafner, M., and Rudolf, R. (2021). hiPSC-derived Schwann cells influence myogenic differentiation in neuromuscular cocultures. Cells 10: 3292, https://doi.org/10.3390/cells10123292.Search in Google Scholar PubMed PubMed Central

Ko, C.P. and Robitaille, R. (2015). Perisynaptic Schwann cells at the neuromuscular synapse: adaptable, multitasking glial cells. Cold Spring Harb. Perspect. Biol. 7: a020503, https://doi.org/10.1101/cshperspect.a020503.Search in Google Scholar PubMed PubMed Central

Lin, C.-Y., Yoshida, M., Li, L.-T., Ikenaka, A., Oshima, S., Nakagawa, K., Sakurai, H., Matsui, E., Nakahata, T., and Saito, M.K. (2019). iPSC-derived functional human neuromuscular junctions model the pathophysiology of neuromuscular diseases. JCI Insight 4: e124299, https://doi.org/10.1172/jci.insight.124299.Search in Google Scholar PubMed PubMed Central

Majd, H., Amin, S., Ghazizadeh, Z., Cesiulis, A., Arroyo, E., Lankford, K., Majd, A., Farahvashi, S., Chemel, A.K., Okoye, M., et al.. (2023). Deriving Schwann cells from hPSCs enables disease modeling and drug discovery for diabetic peripheral neuropathy. Cell Stem Cell 30: 632–647.e10, https://doi.org/10.1016/j.stem.2023.04.006.Search in Google Scholar PubMed PubMed Central

Mars, T., Yu, K.J., Tang, X.M., Miranda, A.F., Grubic, Z., Cambi, F., and King, M.P. (2001). Differentiation of glial cells and motor neurons during the formation of neuromuscular junctions in cocultures of rat spinal cord explant and human muscle. J. Comp. Neurol. 438: 239–251, https://doi.org/10.1002/cne.1312.Search in Google Scholar PubMed

Mazaleyrat, K., Badja, C., Broucqsault, N., Chevalier, R., Laberthonnière, C., Dion, C., Baldasseroni, L., El-Yazidi, C., Thomas, M., Bachelier, R., et al.. (2020). Multilineage differentiation for formation of innervated skeletal muscle fibers from healthy and diseased human pluripotent stem cells. Cells 9: 1531, https://doi.org/10.3390/cells9061531.Search in Google Scholar PubMed PubMed Central

Mukherjee-Clavin, B., Mi, R., Kern, B., Choi, I.Y., Lim, H., Oh, Y., Lannon, B., Kim, K.J., Bell, S., Hur, J.K., et al.. (2019). Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nat. Biomed. Eng. 3: 571–582, https://doi.org/10.1038/s41551-019-0381-8.Search in Google Scholar PubMed PubMed Central

Pappas, G.D., Peterson, E.R., Masurovsky, E.B., and Crain, S.M. (1971). Electron microscopy of the in vitro development of mammalian motor end plates. Ann. N. Y. Acad. Sci. 183: 33–45, https://doi.org/10.1111/j.1749-6632.1971.tb30740.x.Search in Google Scholar PubMed

Peterson, E.R. and Crain, S.M. (1970). Innervation in cultures of fetal rodent skeletal muscle by organotypic explants of spinal cord from different animals. Z. Zellforsch. Mikrosk. Anat. 106: 1–21, https://doi.org/10.1007/bf01027714.Search in Google Scholar PubMed

Peterson, E.R., Crain, S.M., and Murray, M.R. (1965). Differentiation and prolonged maintenance of bioelectrically active spinal cord cultures (rat, chick and human). Z. Zellforsch. Mikrosk. Anat. 66: 130–154, https://doi.org/10.1007/bf00339322.Search in Google Scholar

Petrov, K.A., Girard, E., Nikitashina, A.D., Colasante, C., Bernard, V., Nurullin, L., Leroy, J., Samigullin, D., Colak, O., Nikolsky, E., et al.. (2014). Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase. J. Neurosci. 34: 11870–11883, https://doi.org/10.1523/jneurosci.0329-14.2014.Search in Google Scholar

Raffa, P., Easler, M., and Urciuolo, A. (2022). Three-dimensional in vitro models of neuromuscular tissue. Neural Regen. Res. 17: 759–766, https://doi.org/10.4103/1673-5374.322447.Search in Google Scholar PubMed PubMed Central

Rudolf, R., Khan, M.M., and Witzemann, V. (2019). Motor endplate – anatomical, functional, and molecular concepts in the historical perspective. Cells 8: 387, https://doi.org/10.3390/cells8050387.Search in Google Scholar PubMed PubMed Central

Santosa, K.B., Keane, A.M., Jablonka-Shariff, A., Vannucci, B., and Snyder-Warwick, A.K. (2018). Clinical relevance of terminal Schwann cells: an overlooked component of the neuromuscular junction. J. Neurosci. Res. 96: 1125–1135, https://doi.org/10.1002/jnr.24231.Search in Google Scholar PubMed PubMed Central

Shi, L., Huang, L., He, R., Huang, W., Wang, H., Lai, X., Zou, Z., Sun, J., Ke, Q., Zheng, M., et al.. (2018). Modeling the pathogenesis of Charcot-Marie-Tooth Disease type 1A using patient-specific iPSCs. Stem Cell Rep. 10: 120–133, https://doi.org/10.1016/j.stemcr.2017.11.013.Search in Google Scholar PubMed PubMed Central

Singh, T. and Vazquez, M. (2019). Time-dependent addition of neuronal and Schwann cells increase myotube viability and length in an in vitro tri-culture model of the neuromuscular junction. Regen. Eng. Transl. Med. 5: 402–413, https://doi.org/10.1007/s40883-019-00095-5.Search in Google Scholar

Strickland, J.B., Davis-Anderson, K., Micheva-Viteva, S., Twary, S., Iyer, R., Harris, J.F., and Solomon, E.A. (2022). Optimization of application-driven development of in vitro neuromuscular junction models. Tissue Eng. Part B Rev. 28: 1180–1191, https://doi.org/10.1089/ten.teb.2021.0204.Search in Google Scholar PubMed PubMed Central

Vilmont, V., Cadot, B., Ouanounou, G., and Gomes, E.R. (2016). A system for studying mechanisms of neuromuscular junction development and maintenance. Development 143: 2464–2477, https://doi.org/10.1242/jcs.194613.Search in Google Scholar

Received: 2023-04-04
Accepted: 2023-06-16
Published Online: 2023-06-27
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2023-0172/html
Scroll to top button