Abstract
Infections remain the most common cause of death after traumatic spinal cord injury, likely due to a developing immune deficiency syndrome. This, together with a somewhat contradictory development of autoimmunity in many patients, are two major components of the maladaptive systemic immune response. Although the local non-resolving inflammation in the lesioned spinal cord may lead to an antibody formation against autoantigens of the injured spinal cord tissue, there are also natural (pre-existing) autoantibodies independent of the injury. The way in which these autoantibodies with different origins affect the neuronal and functional outcome of spinal cord-injured patients is still controversial.
-
Research ethics: Not applicable.
-
Author contributions: A.G. and C.M. planned and wrote the manuscript. K.M. proofread the manuscript. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interests.
-
Research funding: This work was supported by the European Union (EU ERA-NET Neuron Program, SILENCE Grant 01 EW170A), the HUPO Brain Proteome Project (HBPP) and the Protein research Unit Ruhr within Europe (PURE). A.G. was supported by the Heinrich und Alma Vogelsang Stiftung and by the Boehringer Ingelheim Fonds.
-
Data availability: Not applicable.
References
Alizadeh, A., Dyck, S.M., and Karimi-Abdolrezaee, S. (2019). Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front. Neurol. 10: 282, https://doi.org/10.3389/fneur.2019.00282.Suche in Google Scholar PubMed PubMed Central
Ankeny, D. and Popovich, P. (2010). B cells and autoantibodies: complex roles in CNS injury. Trends Immunol. 31: 332–338, https://doi.org/10.1016/j.it.2010.06.006.Suche in Google Scholar PubMed PubMed Central
Ankeny, D.P., Lucin, K.M., Sanders, V.M., Mcgaughy, V.M., and Popovich, P.G. (2006). Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J. Neurochem. 99: 1073–1087, https://doi.org/10.1111/j.1471-4159.2006.04147.x.Suche in Google Scholar PubMed
Ankeny, D.P., Guan, Z., and Popovich, P.G. (2009). B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. J. Clin. Invest. 119: 2990–2999, https://doi.org/10.1172/jci39780.Suche in Google Scholar
Arevalo-Martin, A., Grassner, L., Garcia-Ovejero, D., Paniagua-Torija, B., Barroso-Garcia, G., Arandilla, A.G., Mach, O., Turrero, A., Vargas, E., Alcobendas, M., et al. (2018). Elevated autoantibodies in subacute human spinal cord injury are naturally occurring antibodies. Front. Immunol. 9: 1–18, https://doi.org/10.3389/fimmu.2018.02365.Suche in Google Scholar PubMed PubMed Central
Ayala, C., Fishman, M., Noyelle, M., Bassiri, H., and Young, W. (2023). Species differences in blood lymphocyte responses after spinal cord injury. J. Neurotrauma 40: 807–819, https://doi.org/10.1089/neu.2022.0122.Suche in Google Scholar PubMed PubMed Central
Bourguignon, L., Tong, B., Geisler, F., Schubert, M., Röhrich, F., Saur, M., Weidner, N., Rupp, R., Kalke, Y., Abel, R., et al. (2022). International surveillance study in acute spinal cord injury confirms viability of multinational clinical trials. BMC Med. 20: 1–18, https://doi.org/10.1186/s12916-022-02395-0.Suche in Google Scholar PubMed PubMed Central
Burbelo, P., Iadarola, M., Keller, J., and Warner, B. (2021). Autoantibodies targeting intracellular and extracellular proteins in autoimmunity. Front. Immunol. 12, https://doi.org/10.3389/fimmu.2021.548469.Suche in Google Scholar PubMed PubMed Central
Carpenter, R., Jiang, R., Brennan, F., Hall, J., Gottipati, M., Niewiesk, S., and Popovich, P. (2019). Human immune cells infiltrate the spinal cord and impair recovery after spinal cord injury in humanized mice. Sci. Rep. 9: 1–16, https://doi.org/10.1038/s41598-019-55729-z.Suche in Google Scholar PubMed PubMed Central
Casali, P. and Schettino, E. (1996). Structure and function of natural antibodies. Curr. Top. Microbiol. Immunol. 210: 167–179, https://doi.org/10.1007/978-3-642-85226-8_17.Suche in Google Scholar PubMed
Catania, L.J. (2022). The paradox of the immune system: protection, chronic inflammation, autoimmune disease, cancer, and pandemics. Academic Press, Cambridge, Massachusetts.Suche in Google Scholar
Chio, J., Wang, J., Badner, A., Hong, J., Surendran, V., and Fehlings, M. (2019). The effects of human immunoglobulin G on enhancing tissue protection and neurobehavioral recovery after traumatic cervical spinal cord injury are mediated through the neurovascular unit. J. Neuroinflammation 16: 1–18, https://doi.org/10.1186/s12974-019-1518-0.Suche in Google Scholar PubMed PubMed Central
Davies, A.L., Hayes, K.C., and Dekaban, G.A. (2007). Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch. Phys. Med. Rehabil. 88: 1384–1393, https://doi.org/10.1016/j.apmr.2007.08.004.Suche in Google Scholar PubMed
Elkon, K. and Casali, P. (2008). Nature and functions of autoantibodies. Nat. Clin. Pract. Rheumatol. 4: 491–498, https://doi.org/10.1038/ncprheum0895.Suche in Google Scholar PubMed PubMed Central
Filipp, M., Travis, B., Henry, S., Idzikowski, E., Magnuson, S., Loh, M., Hellenbrand, D., and Hanna, A. (2019). Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regener. Res. 14: 7–19, https://doi.org/10.4103/1673-5374.243694.Suche in Google Scholar PubMed PubMed Central
Fraussen, J., Beckers, L., Van Laake-Geelen, C., Depreitere, B., Deckers, J., Cornips, E., Peuskens, D., and Somers, V. (2022). Altered circulating immune cell distribution in traumatic spinal cord injury patients in relation to clinical parameters. Front. Immunol. 13: 1–12, https://doi.org/10.3389/fimmu.2022.873315.Suche in Google Scholar PubMed PubMed Central
Grönwall, C. and Silverman, G. (2014). Natural IgM: beneficial autoantibodies for the control of inflammatory and autoimmune disease. J. Clin. Immunol. 34: S12–S21, https://doi.org/10.1007/s10875-014-0025-4.Suche in Google Scholar PubMed PubMed Central
Hara, M., Martinez-Hernandez, E., Ariño, H., Armangué, T., Spatola, M., Petit-Pedrol, M., Saiz, A., Rosenfeld, M., Graus, F., and Dalmau, J. (2018). Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 90: e1386–e1394, https://doi.org/10.1212/wnl.0000000000005329.Suche in Google Scholar PubMed PubMed Central
Hauben, E., Butovsky, O., Nevo, U., Yoles, E., Moalem, G., Agranov, E., Mor, F., Leibowitz-Amit, R., Pevsner, E., Akselrod, S., et al. (2000). Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J. Neurosci. 20: 6421–6430, https://doi.org/10.1523/jneurosci.20-17-06421.2000.Suche in Google Scholar PubMed PubMed Central
Hoffman, W., Lakkis, F., and Chalasani, G. (2016). B cells, antibodies, and more. Clin. J. Am. Soc. Nephrol. 11: 137–154, https://doi.org/10.2215/cjn.09430915.Suche in Google Scholar PubMed PubMed Central
Ibarra, A., Martinez, S., Reyes, J., Meza-Lucas, A., Mandujano, A., Grijalva, I., Madrazo, I., and Correa, D. (2000). Search for an IgG response against neural antigens in experimental spinal cord injury. Neuroscience 96: 3–5, https://doi.org/10.1016/s0306-4522(99)00541-2.Suche in Google Scholar PubMed
Ibarra, A., Jiménez, A., Cortes, C., and Correa, D. (2007). Influence of the intensity, level and phase of spinal cord injury on the proliferation of T cells and T-cell-dependent antibody reactions in rats. Spinal Cord 45: 380–386.10.1038/sj.sc.3101972Suche in Google Scholar PubMed
Jain, R.W. and Yong, V.W. (2022). B cells in central nervous system disease: diversity, locations and pathophysiology. Nat. Rev. Immunol. 22: 513–524, https://doi.org/10.1038/s41577-021-00652-6.Suche in Google Scholar PubMed PubMed Central
Jones, T., Basso, D., Sodhi, A., Pan, J., Hart, R., Maccallum, R., Lee, S., Whitacre, C., and Popovich, P. (2002). Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J. Neurosci. 22: 2690–2700, https://doi.org/10.1523/jneurosci.22-07-02690.2002.Suche in Google Scholar
Jones, T., Ankeny, D., Guan, Z., Mcgaughy, V., Fisher, L., Basso, D., and Popovich, P. (2004). Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats. J. Neurosci. 24: 3752–3761, https://doi.org/10.1523/jneurosci.0406-04.2004.Suche in Google Scholar
Khasbiullina, N. and Bovin, N. (2015). Hypotheses of the origin of natural antibodies: a glycobiologist’s opinion. Biochemistry Biokhimiia 80: 820–835, https://doi.org/10.1134/s0006297915070032.Suche in Google Scholar
Kigerl, K., Zane, K., Adams, K., Sullivan, M., and Popovich, P. (2020). The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Exp. Neurol. 323, https://doi.org/10.1016/j.expneurol.2019.113085.Suche in Google Scholar PubMed PubMed Central
Laliberte, A. and Fehlings, M. (2013). The immunological response to spinal cord injury: helpful or harmful? Exp. Neurol. 247, https://doi.org/10.1016/j.expneurol.2013.01.008.Suche in Google Scholar PubMed
Lampron, A., Elali, A., and Rivest, S. (2013). Innate immunity in the CNS: redefining the relationship between the CNS and its environment. Neuron 78: 214–232, https://doi.org/10.1016/j.neuron.2013.04.005.Suche in Google Scholar PubMed
Lucin, K.M., Sanders, V.M., Jones, T.B., Malarkey, W.B., and Popovich, P.G. (2007). Impaired antibody synthesis after spinal cord injury is level-dependent and is due to sympathetic nervous system dysregulation. Exp. Neurol. 207: 75–84, https://doi.org/10.1016/j.expneurol.2007.05.019.Suche in Google Scholar PubMed PubMed Central
Lü, H., Xu, L., Zou, J., Wang, Y., Ma, Z., Xu, X., and Lu, P. (2008). Effects of autoimmunity on recovery of function in adult rats following spinal cord injury. Brain Behav. Immun. 22: 1217–1230, https://doi.org/10.1016/j.bbi.2008.06.006.Suche in Google Scholar PubMed
Madi, A., Hecht, I., Bransburg-Zabary, S., Merbl, Y., Pick, A., Zucker-Toledano, M., Quintana, F., Tauber, A., Cohen, I., and Ben-Jacob, E. (2009). Organization of the autoantibody repertoire in healthy newborns and adults revealed by system level informatics of antigen microarray data. Proc. Natl. Acad. Sci. U.S.A. 106: 14484–14489, https://doi.org/10.1073/pnas.0901528106.Suche in Google Scholar PubMed PubMed Central
Mayne, K., White, J., Mcmurran, C., Rivera, F., and De La Fuente, A. (2020). Aging and neurodegenerative disease: is the adaptive immune system a friend or foe? Front. Aging Neurosci. 12: 1–24, https://doi.org/10.3389/fnagi.2020.572090.Suche in Google Scholar PubMed PubMed Central
Merbl, Y., Zucker-Toledano, M., Quintana, F.J., and Cohen, I.R. (2007). Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J. Clin. Invest. 117: 712–718, https://doi.org/10.1172/jci29943.Suche in Google Scholar PubMed PubMed Central
Mizrachi, Y., Ohry, A., Aviel, A., Rozin, R., Brooks, M.E., and Schwartz, M. (1983). Systemic humoral factors participating in the course of spinal cord injury. Spinal Cord 21: 287–293, https://doi.org/10.1038/sc.1983.48.Suche in Google Scholar PubMed
Montecino-Rodriguez, E. and Dorshkind, K. (2012). B-1 B cell development in the fetus and adult. Immunity 36: 1–16, https://doi.org/10.1016/j.immuni.2011.11.017.Suche in Google Scholar PubMed PubMed Central
Narang, A., Qiao, F., Atkinson, C., Zhu, H., Yang, X., Kulik, L., Holers, V., and Tomlinson, S. (2017). Natural IgM antibodies that bind neoepitopes exposed as a result of spinal cord injury, drive secondary injury by activating complement. J. Neuroinflammation 14: 1–12, https://doi.org/10.1186/s12974-017-0894-6.Suche in Google Scholar PubMed PubMed Central
Palladini, G., Grossi, M., Maleci, A., Lauro, G., and Guidetti, B. (1987). Immunocomplexes in rat and rabbit spinal cord after injury. Exp. Neurol. 95: 639–651, https://doi.org/10.1016/0014-4886(87)90305-0.Suche in Google Scholar PubMed
Palmers, I., Ydens, E., Put, E., Depreitere, B., Bongers-Janssen, H., Pickkers, P., Hendrix, S., and Somers, V. (2016). Antibody profiling identifies novel antigenic targets in spinal cord injury patients. J. Neuroinflammation 13, https://doi.org/10.1186/s12974-016-0713-5.Suche in Google Scholar PubMed PubMed Central
Panda, S. and Ding, J. (2015). Natural antibodies bridge innate and adaptive immunity. J. Immunol. 194: 13–20, https://doi.org/10.4049/jimmunol.1400844.Suche in Google Scholar PubMed
Popovich, P. and Longbrake, E. (2008). Can the immune system be harnessed to repair the CNS? Nat. Rev. Neurosci. 9: 481–493, https://doi.org/10.1038/nrn2398.Suche in Google Scholar PubMed
Popovich, P., Stokes, B., and Whitacre, C. (1996). Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system. J. Neurosci. Res. 45: 349–363, https://doi.org/10.1002/(sici)1097-4547(19960815)45:4%3c349::aid-jnr4%3e3.0.co;2-9.10.1002/(SICI)1097-4547(19960815)45:4<349::AID-JNR4>3.0.CO;2-9Suche in Google Scholar
Prüss, H. (2021). Autoantibodies in neurological disease. Nat. Rev. Immunol. 21: 798–813, https://doi.org/10.1038/s41577-021-00543-w.Suche in Google Scholar
Prüss, H., Tedeschi, A., Thiriot, A., Lynch, L., Loughhead, S.M., Stutte, S., Mazo, I.B., Kopp, M.A., Brommer, B., Blex, C., et al.. (2017). Spinal cord injury-induced immunodeficiency is mediated by a sympathetic-neuroendocrine adrenal reflex. Nat. Neurosci. 20: 1549–1559, https://doi.org/10.1038/nn.4643.Suche in Google Scholar
Quintana, F. and Cohen, I. (2004). The natural autoantibody repertoire and autoimmune disease. Biomed. Pharmacother. 58: 276–281, https://doi.org/10.1016/j.biopha.2004.04.011.Suche in Google Scholar
Ramanathan, S., Brilot, F., Irani, S., and Dale, R. (2023). Origins and immunopathogenesis of autoimmune central nervous system disorders. Nat. Rev. Neurol. 19: 172–190, https://doi.org/10.1038/s41582-023-00776-4.Suche in Google Scholar
Reyneveld, G., Savelkoul, H., and Parmentier, H. (2020). Current understanding of natural antibodies and exploring the possibilities of modulation using veterinary models. A review. Front. Immunol. 11: 1–19, https://doi.org/10.3389/fimmu.2020.02139.Suche in Google Scholar
Riegger, T., Conrad, S., Schluesener, H.J., Kaps, H.P., Badke, A., Baron, C., Gerstein, J., Dietz, K., Abdizahdeh, M., and Schwab, J.M. (2009). Immune depression syndrome following human spinal cord injury (SCI): a pilot study. Neuroscience 158: 1194–1199, https://doi.org/10.1016/j.neuroscience.2008.08.021.Suche in Google Scholar
Schneider, D.S. (2021). Immunology’s intolerance of disease tolerance. Nat. Rev. Immunol. 21: 624–625, https://doi.org/10.1038/s41577-021-00619-7.Suche in Google Scholar
Schwab, J.M., Zhang, Y., Kopp, M.A., Brommer, B., and Popovich, P.G. (2014). The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp. Neurol. 258: 121–129, https://doi.org/10.1016/j.expneurol.2014.04.023.Suche in Google Scholar
Schwab, J., Haider, C., Kopp, M., Zrzavy, T., Endmayr, V., Ricken, G., Kubista, H., Haider, T., Liebscher, T., Lübstorf, T., et al. (2023). Lesional antibody synthesis and complement deposition associate with de novo antineuronal antibody synthesis after spinal cord injury. Neurol. Neuroimmunol. Neuroinflamm. 10: 1–14, https://doi.org/10.1212/nxi.0000000000200099.Suche in Google Scholar
Schwaiger, C., Haider, T., Endmayr, V., Zrzavy, T., Gruber, V., Ricken, G., Simonovska, A., Hametner, S., Schwab, J., and Höftberger, R. (2023). Dynamic induction of the myelin-associated growth inhibitor Nogo-A in perilesional plasticity regions after human spinal cord injury. Brain Pathol. 33: 1–13, https://doi.org/10.1111/bpa.13098.Suche in Google Scholar PubMed PubMed Central
Schwartz, M. (2000). Autoimmune involvement in CNS trauma is beneficial if well controlled. Prog. Brain Res. 128: 259–263, https://doi.org/10.1016/S0079-6123(00)28023-0.Suche in Google Scholar PubMed
Schwartz, M. and Baruch, K. (2014). Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: boosting autoimmunity to fight-off chronic neuroinflammation. J. Autoimmun. 54: 1–7, https://doi.org/10.1016/j.jaut.2014.08.002.Suche in Google Scholar PubMed
Shi, H., Xie, L., Xu, W., Cao, S., and Chen, Y. (2022). Nogo-A is a potential prognostic marker for spinal cord injury. Dis. Markers 2022: 1–6, https://doi.org/10.1155/2022/2141854.Suche in Google Scholar PubMed PubMed Central
Shome, M., Chung, Y., Chavan, R., Park, J., Qiu, J., and Labaer, J. (2022). Serum autoantibodyome reveals that healthy individuals share common autoantibodies. Cell Rep. 39: 1–20, https://doi.org/10.1016/j.celrep.2022.110873.Suche in Google Scholar PubMed PubMed Central
Singh, A., Tetreault, L., Kalsi-Ryan, S., Nouri, A., and Fehlings, M.G. (2014). Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 6: 309–331, https://doi.org/10.2147/CLEP.S68889. 25278785.Suche in Google Scholar PubMed PubMed Central
Ulndreaj, A. (2019). Investigation of the antibody response and the role of IgM immunoglobulin in experimental cervical spinal cord injury. TSapce Repository (University of Toronto), Toronto.Suche in Google Scholar
Ulndreaj, A., Tzekou, A., Mothe, A.J., Siddiqui, A.M., Dragas, R., Tator, C.H., Torlakovic, E.E., and Fehlings, M.G. (2017). Characterization of the antibody response after cervical spinal cord injury. J. Neurotrauma 34: 1209–1226, https://doi.org/10.1089/neu.2016.4498.Suche in Google Scholar PubMed PubMed Central
Ulndreaj, A., Tzekou, A., Siddiqui, A., and Fehlings, M. (2020). Effects of experimental cervical spinal cord injury on peripheral adaptive immunity. PLoS One 15: 1–19, https://doi.org/10.1371/journal.pone.0241285.Suche in Google Scholar PubMed PubMed Central
Ulndreaj, A., Vidal, P., Forgione, N., Hong, J., and Fehlings, M. (2021). IgM immunoglobulin influences recovery after cervical spinal cord injury by modulating the IgG autoantibody response. eNeuro 8: 1–22, https://doi.org/10.1523/eneuro.0491-19.2021.Suche in Google Scholar
Vanderlugt, C. and Miller, S. (2002). Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2: 85–95, https://doi.org/10.1038/nri724.Suche in Google Scholar PubMed
Wu, B., Matic, D., Djogo, N., Szpotowicz, E., Schachner, M., and Jakovcevski, I. (2012). Improved regeneration after spinal cord injury in mice lacking functional T- and B-lymphocytes. Exp. Neurol. 237: 274–285, https://doi.org/10.1016/j.expneurol.2012.07.016.Suche in Google Scholar PubMed
Wu, Y., Lin, Y., Shi, L., Yao, Z., Xie, X., Jiang, Z., Tang, J., Hu, J., and Lü, H. (2017). Temporal kinetics of CD8+ CD28+ and CD8+ CD28− T lymphocytes in the injured rat spinal cord. J. Neurosci. Res. 95: 1666–1676, https://doi.org/10.1002/jnr.23993.Suche in Google Scholar PubMed
Yoles, E., Hauben, E., Palgi, O., Agranov, E., Gothilf, A., Cohen, A., Kuchroo, V., Cohen, I., Weiner, H., and Schwartz, M. (2001). Protective autoimmunity is a physiological response to CNS trauma. J. Neurosci. 21: 3740–3748, https://doi.org/10.1523/jneurosci.21-11-03740.2001.Suche in Google Scholar
Young, D. (2020). The NMDA receptor antibody paradox: a possible approach to developing immunotherapies targeting the NMDA receptor. Front. Neurol. 11: 1–6, https://doi.org/10.3389/fneur.2020.00635.Suche in Google Scholar PubMed PubMed Central
Yousefifard, M., Madani Neishaboori, A., Rafiei Alavi, S.N., Toloui, A., Gubari, M.I.M., Zareie Shab Khaneh, A., Karimi Ghahfarokhi, M., and Hosseini, M. (2021). Active and passive immunization with myelin basic protein as a method for early treatment of traumatic spinal cord injury; a meta-analysis. Arch. Acad. Emerg. Med. 9(1): 1–14, https://doi.org/10.22037/aaem.v9i1.1316.Suche in Google Scholar PubMed PubMed Central
Zach, M. and Greslehner, G. (2023). Understanding immunity: an alternative framework beyond defense and strength. Biol. Philos. 38: 1–25, https://doi.org/10.1007/s10539-023-09893-2.Suche in Google Scholar PubMed PubMed Central
Zrzavy, T., Schwaiger, C., Wimmer, I., Berger, T., Bauer, J., Butovsky, O., Schwab, J., Lassmann, H., and Höftberger, R. (2021). Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury. Brain 144: 144–161, https://doi.org/10.1093/brain/awaa360.Suche in Google Scholar PubMed PubMed Central
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight: Horizons in Neuroscience - Organoids, Optogenetics and Remote Control
- Highlight: Horizons in Neuroscience – Organoids, Optogenetics and Remote Control
- Towards correlative archaeology of the human mind
- The promise of genetic screens in human in vitro brain models
- Schwann cells in neuromuscular in vitro models
- Visualization of the membrane surface and cytoskeleton of oligodendrocyte progenitor cell growth cones using a combination of scanning ion conductance and four times expansion microscopy
- Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits
- Illuminating the brain-genetically encoded single wavelength fluorescent biosensors to unravel neurotransmitter dynamics
- Microtubules as a signal hub for axon growth in response to mechanical force
- The good or the bad: an overview of autoantibodies in traumatic spinal cord injury
Artikel in diesem Heft
- Frontmatter
- Highlight: Horizons in Neuroscience - Organoids, Optogenetics and Remote Control
- Highlight: Horizons in Neuroscience – Organoids, Optogenetics and Remote Control
- Towards correlative archaeology of the human mind
- The promise of genetic screens in human in vitro brain models
- Schwann cells in neuromuscular in vitro models
- Visualization of the membrane surface and cytoskeleton of oligodendrocyte progenitor cell growth cones using a combination of scanning ion conductance and four times expansion microscopy
- Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits
- Illuminating the brain-genetically encoded single wavelength fluorescent biosensors to unravel neurotransmitter dynamics
- Microtubules as a signal hub for axon growth in response to mechanical force
- The good or the bad: an overview of autoantibodies in traumatic spinal cord injury