Abstract
Understanding how neuronal networks generate complex behavior is one of the major goals of Neuroscience. Neurotransmitter and Neuromodulators are crucial for information flow between neurons and understanding their dynamics is the key to unravel their role in behavior. To understand how the brain transmits information and how brain states arise, it is essential to visualize the dynamics of neurotransmitters, neuromodulators and neurochemicals. In the last five years, an increasing number of single-wavelength biosensors either based on periplasmic binding proteins (PBPs) or on G-protein-coupled receptors (GPCR) have been published that are able to detect neurotransmitter release in vitro and in vivo with high spatial and temporal resolution. Here we review and discuss recent progress in the development of these sensors, their limitations and future directions.
Funding source: DFG MA 4692/6
Funding source: DFG 122679504 - SFB 874
Acknowledgment
We would like to thank Juliana Groß and Kim Renken for their valuable comments and proof reading.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was funded by DFG (Nos. MA 4692/6, 122679504 - SFB 874).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abraham, A.D., Casello, S.M., Schattauer, S.S., Wong, B.A., Mizuno, G.O., Mahe, K., Tian, L., Land, B.B., and Chavkin, C. (2021). Release of endogenous dynorphin opioids in the prefrontal cortex disrupts cognition. Neuropsychopharmacology 46: 2330–2339, https://doi.org/10.1038/s41386-021-01168-2.Search in Google Scholar PubMed PubMed Central
Ackermann, J., Metternich, J.T., Herbertz, S., and Kruss, S. (2022). Biosensing with fluorescent carbon nanotubes. Angew. Chem. Int. Ed. Engl. 61: e202112372, https://doi.org/10.1002/anie.202112372.Search in Google Scholar PubMed PubMed Central
Akerboom, J., Calderón, N.C., Tian, L., Wabnig, S., Prigge, M., Tolö, J., Gordus, A., Orger, M.B., Severi, K.E., Macklin, J.J., et al.. (2013). Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, https://doi.org/10.3389/fnmol.2013.00002.Search in Google Scholar PubMed PubMed Central
Baird, G.S., Zacharias, D.A., and Tsien, R.Y. (1999). Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. 96: 11241–11246, https://doi.org/10.1073/pnas.96.20.11241.Search in Google Scholar PubMed PubMed Central
Borden, P.M., Zhang, P., Shivange, A.V., Marvin, J.S., Cichon, J., Dan, C., Podgorski, K., Figueiredo, A., Novak, O., Tanimoto, M., et al.. (2020). A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies (preprint). Neuroscience, https://doi.org/10.1101/2020.02.07.939504.Search in Google Scholar
Broussard, G.J., Liang, R., and Tian, L. (2014). Monitoring activity in neural circuits with genetically encoded indicators. Front. Mol. Neurosci. 7, https://doi.org/10.3389/fnmol.2014.00097.Search in Google Scholar PubMed PubMed Central
Chen, K.Y.M., Keri, D., and Barth, P. (2020). Computational design of G protein-coupled receptor allosteric signal transductions. Nat. Chem. Biol. 16: 77–86, https://doi.org/10.1038/s41589-019-0407-2.Search in Google Scholar PubMed
Chen, T.W., Wardill, T., and Sun, Y. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499: 295–300, https://doi.org/10.1038/nature12354.Search in Google Scholar PubMed PubMed Central
Dai, B., Sun, F., Tong, X., Ding, Y., Kuang, A., Osakada, T., Li, Y., and Lin, D. (2022). Responses and functions of dopamine in nucleus accumbens core during social behaviors. Cell Rep. 40: 111246, https://doi.org/10.1016/j.celrep.2022.111246.Search in Google Scholar PubMed PubMed Central
Dana, H., Mohar, B., Sun, Y., Narayan, S., Gordus, A., Hasseman, J.P., Tsegaye, G., Holt, G.T., Hu, A., Walpita, D., et al.. (2016). Sensitive red protein calcium indicators for imaging neural activity. Elife 5: e12727, https://doi.org/10.7554/eLife.12727.Search in Google Scholar PubMed PubMed Central
Deupi, X. and Standfuss, J. (2011). Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr. Opin. Struct. Biol. 21: 541–551, https://doi.org/10.1016/j.sbi.2011.06.002.Search in Google Scholar PubMed
Díaz‐García, C.M., Lahmann, C., Martínez‐François, J.R., Li, B., Koveal, D., Nathwani, N., Rahman, M., Keller, J.P., Marvin, J.S., Looger, L.L., et al.. (2019). Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor. J. Neurosci. Res. 97: 946–960, https://doi.org/10.1002/jnr.24433.Search in Google Scholar PubMed PubMed Central
Dinarvand, M., Neubert, E., Meyer, D., Selvaggio, G., Mann, F.A., Erpenbeck, L., and Kruss, S. (2019). Near-infrared imaging of serotonin release from cells with fluorescent nanosensors. Nano Lett. 19: 6604–6611, https://doi.org/10.1021/acs.nanolett.9b02865.Search in Google Scholar PubMed
Dong, C., Ly, C., Dunlap, L.E., Vargas, M.V., Sun, J., Hwang, I.W., Azinfar, A., Oh, W.C., Wetsel, W.C., Olson, D.E., et al.. (2021). Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184: 2779–2792.e18, https://doi.org/10.1016/j.cell.2021.03.043.Search in Google Scholar PubMed PubMed Central
Dong, A., He, K., Dudok, B., Farrell, J.S., Guan, W., Liput, D.J., Puhl, H.L., Cai, R., Wang, H., Duan, J., et al.. (2022). A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nat. Biotechnol. 40: 787–798, https://doi.org/10.1038/s41587-021-01074-4.Search in Google Scholar PubMed PubMed Central
Duffet, L., Kosar, S., Panniello, M., Viberti, B., Bracey, E., Zych, A.D., Radoux-Mergault, A., Zhou, X., Dernic, J., Ravotto, L., et al.. (2022). A genetically encoded sensor for in vivo imaging of orexin neuropeptides. Nat. Methods 19: 231–241, https://doi.org/10.1038/s41592-021-01390-2.Search in Google Scholar PubMed PubMed Central
Duffet, L., Williams, E.T., Gresch, A., Chen, S., Bhat, M.A., Benke, D., Hartrampf, N., and Patriarchi, T. (2023). Optical tools for visualizing and controlling human GLP-1 receptor activation with high spatiotemporal resolution (preprint). Biochemistry, https://doi.org/10.1101/2023.02.14.528498.Search in Google Scholar
Edwards, K.A. (2021). Periplasmic-binding protein-based biosensors and bioanalytical assay platforms: advances, considerations, and strategies for optimal utility. Talanta Open 3: 100038, https://doi.org/10.1016/j.talo.2021.100038.Search in Google Scholar
Feng, J., Zhang, C., Lischinsky, J.E., Jing, M., Zhou, J., Wang, H., Zhang, Y., Dong, A., Wu, Z., Wu, H., et al.. (2019). A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102: 745–761.e8, https://doi.org/10.1016/j.neuron.2019.02.037.Search in Google Scholar PubMed PubMed Central
Fredriksson, R., Lagerström, M.C., Lundin, L.G., and Schiöth, H.B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63: 1256–1272, https://doi.org/10.1124/mol.63.6.1256.Search in Google Scholar PubMed
Frommer, W.B., Davidson, M.W., and Campbell, R.E. (2009). Genetically encoded biosensors based on engineered fluorescent proteins. Chem. Soc. Rev. 38: 2833, https://doi.org/10.1039/b907749a.Search in Google Scholar PubMed PubMed Central
Gloriam, D.E., Fredriksson, R., and Schiöth, H.B. (2007). The G protein-coupled receptor subset of the rat genome. BMC Genom. 8: 338, https://doi.org/10.1186/1471-2164-8-338.Search in Google Scholar PubMed PubMed Central
Helassa, N., Dürst, C.D., Coates, C., Kerruth, S., Arif, U., Schulze, C., Wiegert, J.S., Geeves, M., Oertner, T.G., and Török, K. (2018). Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc. Natl. Acad. Sci. U. S. A. 115: 5594–5599, https://doi.org/10.1073/pnas.1720648115.Search in Google Scholar PubMed PubMed Central
Ino, D., Tanaka, Y., Hibino, H., and Nishiyama, M. (2022). A fluorescent sensor for real-time measurement of extracellular oxytocin dynamics in the brain. Nat. Methods 19: 1286–1294, https://doi.org/10.1038/s41592-022-01597-x.Search in Google Scholar PubMed PubMed Central
Jensen, A.A. and Spalding, T.A. (2004). Allosteric modulation of G-protein coupled receptors. Eur. J. Pharm. Sci. 21: 407–420, https://doi.org/10.1016/j.ejps.2003.11.007.Search in Google Scholar PubMed
Jing, M., Zhang, P., Wang, G., Feng, J., Mesik, L., Zeng, J., Jiang, H., Wang, S., Looby, J.C., Guagliardo, N.A., et al.. (2018). A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36: 726–737, https://doi.org/10.1038/nbt.4184.Search in Google Scholar PubMed PubMed Central
Jing, M., Li, Y., Zeng, J., Huang, P., Skirzewski, M., Kljakic, O., Peng, W., Qian, T., Tan, K., Zou, J., et al.. (2020). An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 17: 1139–1146, https://doi.org/10.1038/s41592-020-0953-2.Search in Google Scholar PubMed PubMed Central
Keller, J.P., Marvin, J.S., Lacin, H., Lemon, W.C., Shea, J., Kim, S., Lee, R.T., Koyama, M., Keller, P.J., and Looger, L.L. (2021). In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. Cell Rep. 35: 109284, https://doi.org/10.1016/j.celrep.2021.109284.Search in Google Scholar PubMed
Keri, D., Cola, R.B., Kagiampaki, Z., Tommaso, P., and Barth, P. (2021). Computationally-guided tuning of ligand sensitivity in a GPCR-based sensor (preprint). Bioengineering, https://doi.org/10.1101/2021.09.21.461282.Search in Google Scholar
Kim, H., Nam, M.H., Jeong, S., Lee, H., Oh, S.J., Kim, J., Choi, N., and Seong, J. (2022). Visualization of differential GPCR crosstalk in DRD1-DRD2 heterodimer upon different dopamine levels. Prog. Neurobiol. 213: 102266, https://doi.org/10.1016/j.pneurobio.2022.102266.Search in Google Scholar PubMed
Kubitschke, M., Müller, M., Wallhorn, L., Pulin, M., Mittag, M., Pollok, S., Ziebarth, T., Bremshey, S., Gerdey, J., Claussen, K.C., et al.. (2022). Next generation genetically encoded fluorescent sensors for serotonin. Nat. Commun. 13: 7525, https://doi.org/10.1038/s41467-022-35200-w.Search in Google Scholar PubMed PubMed Central
Kruss, S., Hilmer, A.J., Zhang, J., Reuel, N.F., Mu, B., and Strano, M.S. (2013). Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 65: 1933–1950, https://doi.org/10.1016/j.addr.2013.07.015.Search in Google Scholar PubMed
Labouesse, M.A. and Patriarchi, T. (2021). A versatile GPCR toolkit to track in vivo neuromodulation: not a one-size-fits-all sensor. Neuropsychopharmacology 46: 2043–2047, https://doi.org/10.1038/s41386-021-00982-y.Search in Google Scholar PubMed PubMed Central
Marvin, J.S., Schreiter, E.R., Echevarría, I.M., and Looger, L.L. (2011). A genetically encoded, high‐signal‐to‐noise maltose sensor. Proteins 79: 3025–3036, https://doi.org/10.1002/prot.23118.Search in Google Scholar PubMed PubMed Central
Marvin, J.S., Borghuis, B.G., Tian, L., Cichon, J., Harnett, M.T., Akerboom, J., Gordus, A., Renninger, S.L., Chen, T.W., Bargmann, C.I., et al.. (2013). An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10: 162–170, https://doi.org/10.1038/nmeth.2333.Search in Google Scholar PubMed PubMed Central
Marvin, J.S., Scholl, B., Wilson, D.E., Podgorski, K., Kazemipour, A., Müller, J.A., Schoch, S., Quiroz, F.J.U., Rebola, N., Bao, H., et al.. (2018). Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15: 936–939, https://doi.org/10.1038/s41592-018-0171-3.Search in Google Scholar PubMed PubMed Central
Marvin, J.S., Shimoda, Y., Magloire, V., Leite, M., Kawashima, T., Jensen, T.P., Kolb, I., Knott, E.L., Novak, O., Podgorski, K., et al.. (2019). A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16: 763–770, https://doi.org/10.1038/s41592-019-0471-2.Search in Google Scholar PubMed
Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nat. Methods 19: 679–682, https://doi.org/10.1038/s41592-022-01488-1.Search in Google Scholar PubMed PubMed Central
Mohebi, A., Pettibone, J.R., Hamid, A.A., Wong, J.M.T., Vinson, L.T., Patriarchi, T., Tian, L., Kennedy, R.T., and Berke, J.D. (2019). Dissociable dopamine dynamics for learning and motivation. Nature 570: 65–70, https://doi.org/10.1038/s41586-019-1235-y.Search in Google Scholar PubMed PubMed Central
Nagai, T., Sawano, A., Park, E.S., and Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. U.S.A. 98: 3197–3202, https://doi.org/10.1073/pnas.051636098.Search in Google Scholar PubMed PubMed Central
Nakai, J., Ohkura, M., and Imoto, K. (2001). A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19: 137–141, https://doi.org/10.1038/84397.Search in Google Scholar PubMed
Nakamoto, C., Goto, Y., Tomizawa, Y., Fukata, Y., Fukata, M., Harpsøe, K., Gloriam, D.E., Aoki, K., and Takeuchi, T. (2021). A novel red fluorescence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro. Mol. Brain 14: 173, https://doi.org/10.1186/s13041-021-00882-8.Search in Google Scholar PubMed PubMed Central
Nasu, Y., Shen, Y., Kramer, L., and Campbell, R.E. (2021). Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 17: 509–518, https://doi.org/10.1038/s41589-020-00718-x.Search in Google Scholar PubMed
Ozkan, A.D., Gettas, T., Sogata, A., Phaychanpheng, W., Zhou, M., and Lacroix, J.J. (2021). Mechanical and chemical activation of GPR68 probed with a genetically encoded fluorescent reporter. J. Cell Sci. 134: jcs255455, https://doi.org/10.1242/jcs.255455.Search in Google Scholar PubMed PubMed Central
Patriarchi, T., Cho, J.R., Merten, K., Howe, M.W., Marley, A., Xiong, W.H., Folk, R.W., Broussard, G.J., Liang, R., Jang, M.J., et al.. (2018). Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360: eaat4422, https://doi.org/10.1126/science.aat4422.Search in Google Scholar PubMed PubMed Central
Patriarchi, T., Mohebi, A., Sun, J., Marley, A., Liang, R., Dong, C., Puhger, K., Mizuno, G.O., Davis, C.M., Wiltgen, B., et al.. (2020). An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 17: 1147–1155, https://doi.org/10.1038/s41592-020-0936-3.Search in Google Scholar PubMed PubMed Central
Peng, W., Wu, Z., Song, K., Zhang, S., Li, Y., and Xu, M. (2020). Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369: eabb0556, https://doi.org/10.1126/science.abb0556.Search in Google Scholar PubMed
Qian, T., Wang, H., Wang, P., Geng, L., Mei, L., Osakada, T., Wang, L., Tang, Y., Kania, A., Grinevich, V., et al.. (2023). A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. Nat. Biotechnol., https://doi.org/10.1038/s41587-022-01561-2.Search in Google Scholar PubMed
Rappleye, M., Gordon-Fennel, A., Castro, D.C., Matarasso, A.K., Zamorano, C.A., Stine, C., Wait, S.J., Lee, J.D., Siebart, J.C., Suko, A., et al.. (2022). Opto-MASS: a high-throughput engineering platform for genetically encoded fluorescent sensors enabling all-optical in vivo detection of monoamines and opioids (preprint). Bioengineering, https://doi.org/10.1101/2022.06.01.494241.Search in Google Scholar
Rasmussen, S.G.F., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., et al.. (2011). Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477: 549–555, https://doi.org/10.1038/nature10361.Search in Google Scholar PubMed PubMed Central
Sabatini, B.L. and Tian, L. (2020). Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108: 17–32, https://doi.org/10.1016/j.neuron.2020.09.036.Search in Google Scholar PubMed
Shivange, A.V., Borden, P.M., Muthusamy, A.K., Nichols, A.L., Bera, K., Bao, H., Bishara, I., Jeon, J., Mulcahy, M.J., Cohen, B., et al.. (2019). Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. J. Gen. Physiol. 151: 738–757, https://doi.org/10.1085/jgp.201812201.Search in Google Scholar PubMed PubMed Central
Sistemich, L., Galonska, P., Stegemann, J., Ackermann, J., and Kruss, S. (2023). Near-infrared fluorescence lifetime imaging of biomolecules with carbon nanotubes. Angew. Chem., Int. Ed. e202300682, https://doi.org/10.1002/anie.202300682.Search in Google Scholar PubMed
Sun, F., Zeng, J., Jing, M., Zhou, J., Feng, J., Owen, S.F., Luo, Y., Li, F., Wang, H., Yamaguchi, T., et al.. (2018). A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174: 481–496.e19, https://doi.org/10.1016/j.cell.2018.06.042.Search in Google Scholar PubMed PubMed Central
Sun, F., Zhou, J., Dai, B., Qian, T., Zeng, J., Li, X., Zhuo, Y., Zhang, Y., Wang, Y., Qian, C., et al.. (2020). Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 17: 1156–1166, https://doi.org/10.1038/s41592-020-00981-9.Search in Google Scholar PubMed PubMed Central
Tîlmaciu, C.M. and Morris, M.C. (2015). Carbon nanotube biosensors. Front. Chem. 3: 59, https://doi.org/10.3389/fchem.2015.00059.Search in Google Scholar PubMed PubMed Central
Unger, E.K., Keller, J.P., Altermatt, M., Liang, R., Matsui, A., Dong, C., Hon, O.J., Yao, Z., Sun, J., Banala, S., et al.. (2020). Directed evolution of a selective and sensitive serotonin sensor via machine learning. Cell 183: 1986–2002.e26, https://doi.org/10.1016/j.cell.2020.11.040.Search in Google Scholar PubMed PubMed Central
Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F., and Babu, M.M. (2013). Molecular signatures of G-protein-coupled receptors. Nature 494: 185–194, https://doi.org/10.1038/nature11896.Search in Google Scholar PubMed
Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al.. (2001). The sequence of the human genome. Science 291: 1304–1351, https://doi.org/10.1126/science.1058040.Search in Google Scholar PubMed
Wan, J., Peng, W., Li, X., Qian, T., Song, K., Zeng, J., Deng, F., Hao, S., Feng, J., Zhang, P., et al.. (2021). A genetically encoded sensor for measuring serotonin dynamics. Nat. Neurosci. 24: 746–752, https://doi.org/10.1038/s41593-021-00823-7.Search in Google Scholar PubMed PubMed Central
Wang, H., Qian, T., Zhao, Y., Zhuo, Y., Wu, C., Osakada, T., Chen, P., Ren, H., Yan, Y., Geng, L., et al.. (2022). A toolkit of highly selective and sensitive genetically encoded neuropeptide sensors (preprint). Neuroscience, https://doi.org/10.1101/2022.03.26.485911.Search in Google Scholar
Wingler, L.M. and Lefkowitz, R.J. (2020). Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol. 30: 736–747, https://doi.org/10.1016/j.tcb.2020.06.002.Search in Google Scholar PubMed PubMed Central
Wu, J., Abdelfattah, A.S., Zhou, H., Ruangkittisakul, A., Qian, Y., Ballanyi, K., and Campbell, R.E. (2018). Genetically encoded glutamate indicators with altered color and topology. ACS Chem. Biol. 13: 1832–1837, https://doi.org/10.1021/acschembio.7b01085.Search in Google Scholar PubMed
Wu, Z., Cui, Y., Wang, H., Song, K., Yuan, Z., Dong, A., Wu, H., Wan, Y., Pan, S., Peng, W., et al.. (2020). A GRAB sensor reveals activity-dependent non-vesicular somatodendritic adenosine release (preprint). Neuroscience, https://doi.org/10.1101/2020.05.04.075564.Search in Google Scholar
Wu, Z., He, K., Chen, Y., Li, H., Pan, S., Li, B., Liu, T., Xi, F., Deng, F., Wang, H., et al.. (2022a). A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 110: 770–782.e5, https://doi.org/10.1016/j.neuron.2021.11.027.Search in Google Scholar PubMed
Wu, Z., Lin, D., and Li, Y. (2022b). Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat. Rev. Neurosci. 23: 257–274, https://doi.org/10.1038/s41583-022-00577-6.Search in Google Scholar PubMed
Wu, Z., Cui, Y., Wang, H., Wu, H., Wan, Y., Li, B., Wang, L., Pan, S., Peng, W., Dong, A., et al.. (2023). Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Proc. Natl. Acad. Sci. U.S.A. 120: e2212387120, https://doi.org/10.1073/pnas.2212387120.Search in Google Scholar PubMed PubMed Central
Zhang, Y., Rózsa, M., Liang, Y., Bushey, D., Wei, Z., Zheng, J., Reep, D., Broussard, G.J., Tsang, A., Tsegaye, G., et al.. (2023). Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615: 884–891, https://doi.org/10.1038/s41586-023-05828-9.Search in Google Scholar PubMed PubMed Central
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Highlight: Horizons in Neuroscience - Organoids, Optogenetics and Remote Control
- Highlight: Horizons in Neuroscience – Organoids, Optogenetics and Remote Control
- Towards correlative archaeology of the human mind
- The promise of genetic screens in human in vitro brain models
- Schwann cells in neuromuscular in vitro models
- Visualization of the membrane surface and cytoskeleton of oligodendrocyte progenitor cell growth cones using a combination of scanning ion conductance and four times expansion microscopy
- Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits
- Illuminating the brain-genetically encoded single wavelength fluorescent biosensors to unravel neurotransmitter dynamics
- Microtubules as a signal hub for axon growth in response to mechanical force
- The good or the bad: an overview of autoantibodies in traumatic spinal cord injury
Articles in the same Issue
- Frontmatter
- Highlight: Horizons in Neuroscience - Organoids, Optogenetics and Remote Control
- Highlight: Horizons in Neuroscience – Organoids, Optogenetics and Remote Control
- Towards correlative archaeology of the human mind
- The promise of genetic screens in human in vitro brain models
- Schwann cells in neuromuscular in vitro models
- Visualization of the membrane surface and cytoskeleton of oligodendrocyte progenitor cell growth cones using a combination of scanning ion conductance and four times expansion microscopy
- Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits
- Illuminating the brain-genetically encoded single wavelength fluorescent biosensors to unravel neurotransmitter dynamics
- Microtubules as a signal hub for axon growth in response to mechanical force
- The good or the bad: an overview of autoantibodies in traumatic spinal cord injury