Home Illuminating the brain-genetically encoded single wavelength fluorescent biosensors to unravel neurotransmitter dynamics
Article
Licensed
Unlicensed Requires Authentication

Illuminating the brain-genetically encoded single wavelength fluorescent biosensors to unravel neurotransmitter dynamics

  • Martin Kubitschke and Olivia A. Masseck ORCID logo EMAIL logo
Published/Copyright: May 30, 2023

Abstract

Understanding how neuronal networks generate complex behavior is one of the major goals of Neuroscience. Neurotransmitter and Neuromodulators are crucial for information flow between neurons and understanding their dynamics is the key to unravel their role in behavior. To understand how the brain transmits information and how brain states arise, it is essential to visualize the dynamics of neurotransmitters, neuromodulators and neurochemicals. In the last five years, an increasing number of single-wavelength biosensors either based on periplasmic binding proteins (PBPs) or on G-protein-coupled receptors (GPCR) have been published that are able to detect neurotransmitter release in vitro and in vivo with high spatial and temporal resolution. Here we review and discuss recent progress in the development of these sensors, their limitations and future directions.


Corresponding author: Olivia A. Masseck, Synthetic Biology, University of Bremen, 28359 Bremen, Germany, E-mail:

Funding source: DFG MA 4692/6

Funding source: DFG 122679504 - SFB 874

Acknowledgment

We would like to thank Juliana Groß and Kim Renken for their valuable comments and proof reading.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by DFG (Nos. MA 4692/6, 122679504 - SFB 874).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abraham, A.D., Casello, S.M., Schattauer, S.S., Wong, B.A., Mizuno, G.O., Mahe, K., Tian, L., Land, B.B., and Chavkin, C. (2021). Release of endogenous dynorphin opioids in the prefrontal cortex disrupts cognition. Neuropsychopharmacology 46: 2330–2339, https://doi.org/10.1038/s41386-021-01168-2.Search in Google Scholar PubMed PubMed Central

Ackermann, J., Metternich, J.T., Herbertz, S., and Kruss, S. (2022). Biosensing with fluorescent carbon nanotubes. Angew. Chem. Int. Ed. Engl. 61: e202112372, https://doi.org/10.1002/anie.202112372.Search in Google Scholar PubMed PubMed Central

Akerboom, J., Calderón, N.C., Tian, L., Wabnig, S., Prigge, M., Tolö, J., Gordus, A., Orger, M.B., Severi, K.E., Macklin, J.J., et al.. (2013). Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, https://doi.org/10.3389/fnmol.2013.00002.Search in Google Scholar PubMed PubMed Central

Baird, G.S., Zacharias, D.A., and Tsien, R.Y. (1999). Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. 96: 11241–11246, https://doi.org/10.1073/pnas.96.20.11241.Search in Google Scholar PubMed PubMed Central

Borden, P.M., Zhang, P., Shivange, A.V., Marvin, J.S., Cichon, J., Dan, C., Podgorski, K., Figueiredo, A., Novak, O., Tanimoto, M., et al.. (2020). A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies (preprint). Neuroscience, https://doi.org/10.1101/2020.02.07.939504.Search in Google Scholar

Broussard, G.J., Liang, R., and Tian, L. (2014). Monitoring activity in neural circuits with genetically encoded indicators. Front. Mol. Neurosci. 7, https://doi.org/10.3389/fnmol.2014.00097.Search in Google Scholar PubMed PubMed Central

Chen, K.Y.M., Keri, D., and Barth, P. (2020). Computational design of G protein-coupled receptor allosteric signal transductions. Nat. Chem. Biol. 16: 77–86, https://doi.org/10.1038/s41589-019-0407-2.Search in Google Scholar PubMed

Chen, T.W., Wardill, T., and Sun, Y. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499: 295–300, https://doi.org/10.1038/nature12354.Search in Google Scholar PubMed PubMed Central

Dai, B., Sun, F., Tong, X., Ding, Y., Kuang, A., Osakada, T., Li, Y., and Lin, D. (2022). Responses and functions of dopamine in nucleus accumbens core during social behaviors. Cell Rep. 40: 111246, https://doi.org/10.1016/j.celrep.2022.111246.Search in Google Scholar PubMed PubMed Central

Dana, H., Mohar, B., Sun, Y., Narayan, S., Gordus, A., Hasseman, J.P., Tsegaye, G., Holt, G.T., Hu, A., Walpita, D., et al.. (2016). Sensitive red protein calcium indicators for imaging neural activity. Elife 5: e12727, https://doi.org/10.7554/eLife.12727.Search in Google Scholar PubMed PubMed Central

Deupi, X. and Standfuss, J. (2011). Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr. Opin. Struct. Biol. 21: 541–551, https://doi.org/10.1016/j.sbi.2011.06.002.Search in Google Scholar PubMed

Díaz‐García, C.M., Lahmann, C., Martínez‐François, J.R., Li, B., Koveal, D., Nathwani, N., Rahman, M., Keller, J.P., Marvin, J.S., Looger, L.L., et al.. (2019). Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor. J. Neurosci. Res. 97: 946–960, https://doi.org/10.1002/jnr.24433.Search in Google Scholar PubMed PubMed Central

Dinarvand, M., Neubert, E., Meyer, D., Selvaggio, G., Mann, F.A., Erpenbeck, L., and Kruss, S. (2019). Near-infrared imaging of serotonin release from cells with fluorescent nanosensors. Nano Lett. 19: 6604–6611, https://doi.org/10.1021/acs.nanolett.9b02865.Search in Google Scholar PubMed

Dong, C., Ly, C., Dunlap, L.E., Vargas, M.V., Sun, J., Hwang, I.W., Azinfar, A., Oh, W.C., Wetsel, W.C., Olson, D.E., et al.. (2021). Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184: 2779–2792.e18, https://doi.org/10.1016/j.cell.2021.03.043.Search in Google Scholar PubMed PubMed Central

Dong, A., He, K., Dudok, B., Farrell, J.S., Guan, W., Liput, D.J., Puhl, H.L., Cai, R., Wang, H., Duan, J., et al.. (2022). A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nat. Biotechnol. 40: 787–798, https://doi.org/10.1038/s41587-021-01074-4.Search in Google Scholar PubMed PubMed Central

Duffet, L., Kosar, S., Panniello, M., Viberti, B., Bracey, E., Zych, A.D., Radoux-Mergault, A., Zhou, X., Dernic, J., Ravotto, L., et al.. (2022). A genetically encoded sensor for in vivo imaging of orexin neuropeptides. Nat. Methods 19: 231–241, https://doi.org/10.1038/s41592-021-01390-2.Search in Google Scholar PubMed PubMed Central

Duffet, L., Williams, E.T., Gresch, A., Chen, S., Bhat, M.A., Benke, D., Hartrampf, N., and Patriarchi, T. (2023). Optical tools for visualizing and controlling human GLP-1 receptor activation with high spatiotemporal resolution (preprint). Biochemistry, https://doi.org/10.1101/2023.02.14.528498.Search in Google Scholar

Edwards, K.A. (2021). Periplasmic-binding protein-based biosensors and bioanalytical assay platforms: advances, considerations, and strategies for optimal utility. Talanta Open 3: 100038, https://doi.org/10.1016/j.talo.2021.100038.Search in Google Scholar

Feng, J., Zhang, C., Lischinsky, J.E., Jing, M., Zhou, J., Wang, H., Zhang, Y., Dong, A., Wu, Z., Wu, H., et al.. (2019). A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102: 745–761.e8, https://doi.org/10.1016/j.neuron.2019.02.037.Search in Google Scholar PubMed PubMed Central

Fredriksson, R., Lagerström, M.C., Lundin, L.G., and Schiöth, H.B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63: 1256–1272, https://doi.org/10.1124/mol.63.6.1256.Search in Google Scholar PubMed

Frommer, W.B., Davidson, M.W., and Campbell, R.E. (2009). Genetically encoded biosensors based on engineered fluorescent proteins. Chem. Soc. Rev. 38: 2833, https://doi.org/10.1039/b907749a.Search in Google Scholar PubMed PubMed Central

Gloriam, D.E., Fredriksson, R., and Schiöth, H.B. (2007). The G protein-coupled receptor subset of the rat genome. BMC Genom. 8: 338, https://doi.org/10.1186/1471-2164-8-338.Search in Google Scholar PubMed PubMed Central

Helassa, N., Dürst, C.D., Coates, C., Kerruth, S., Arif, U., Schulze, C., Wiegert, J.S., Geeves, M., Oertner, T.G., and Török, K. (2018). Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc. Natl. Acad. Sci. U. S. A. 115: 5594–5599, https://doi.org/10.1073/pnas.1720648115.Search in Google Scholar PubMed PubMed Central

Ino, D., Tanaka, Y., Hibino, H., and Nishiyama, M. (2022). A fluorescent sensor for real-time measurement of extracellular oxytocin dynamics in the brain. Nat. Methods 19: 1286–1294, https://doi.org/10.1038/s41592-022-01597-x.Search in Google Scholar PubMed PubMed Central

Jensen, A.A. and Spalding, T.A. (2004). Allosteric modulation of G-protein coupled receptors. Eur. J. Pharm. Sci. 21: 407–420, https://doi.org/10.1016/j.ejps.2003.11.007.Search in Google Scholar PubMed

Jing, M., Zhang, P., Wang, G., Feng, J., Mesik, L., Zeng, J., Jiang, H., Wang, S., Looby, J.C., Guagliardo, N.A., et al.. (2018). A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36: 726–737, https://doi.org/10.1038/nbt.4184.Search in Google Scholar PubMed PubMed Central

Jing, M., Li, Y., Zeng, J., Huang, P., Skirzewski, M., Kljakic, O., Peng, W., Qian, T., Tan, K., Zou, J., et al.. (2020). An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 17: 1139–1146, https://doi.org/10.1038/s41592-020-0953-2.Search in Google Scholar PubMed PubMed Central

Keller, J.P., Marvin, J.S., Lacin, H., Lemon, W.C., Shea, J., Kim, S., Lee, R.T., Koyama, M., Keller, P.J., and Looger, L.L. (2021). In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. Cell Rep. 35: 109284, https://doi.org/10.1016/j.celrep.2021.109284.Search in Google Scholar PubMed

Keri, D., Cola, R.B., Kagiampaki, Z., Tommaso, P., and Barth, P. (2021). Computationally-guided tuning of ligand sensitivity in a GPCR-based sensor (preprint). Bioengineering, https://doi.org/10.1101/2021.09.21.461282.Search in Google Scholar

Kim, H., Nam, M.H., Jeong, S., Lee, H., Oh, S.J., Kim, J., Choi, N., and Seong, J. (2022). Visualization of differential GPCR crosstalk in DRD1-DRD2 heterodimer upon different dopamine levels. Prog. Neurobiol. 213: 102266, https://doi.org/10.1016/j.pneurobio.2022.102266.Search in Google Scholar PubMed

Kubitschke, M., Müller, M., Wallhorn, L., Pulin, M., Mittag, M., Pollok, S., Ziebarth, T., Bremshey, S., Gerdey, J., Claussen, K.C., et al.. (2022). Next generation genetically encoded fluorescent sensors for serotonin. Nat. Commun. 13: 7525, https://doi.org/10.1038/s41467-022-35200-w.Search in Google Scholar PubMed PubMed Central

Kruss, S., Hilmer, A.J., Zhang, J., Reuel, N.F., Mu, B., and Strano, M.S. (2013). Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 65: 1933–1950, https://doi.org/10.1016/j.addr.2013.07.015.Search in Google Scholar PubMed

Labouesse, M.A. and Patriarchi, T. (2021). A versatile GPCR toolkit to track in vivo neuromodulation: not a one-size-fits-all sensor. Neuropsychopharmacology 46: 2043–2047, https://doi.org/10.1038/s41386-021-00982-y.Search in Google Scholar PubMed PubMed Central

Marvin, J.S., Schreiter, E.R., Echevarría, I.M., and Looger, L.L. (2011). A genetically encoded, high‐signal‐to‐noise maltose sensor. Proteins 79: 3025–3036, https://doi.org/10.1002/prot.23118.Search in Google Scholar PubMed PubMed Central

Marvin, J.S., Borghuis, B.G., Tian, L., Cichon, J., Harnett, M.T., Akerboom, J., Gordus, A., Renninger, S.L., Chen, T.W., Bargmann, C.I., et al.. (2013). An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10: 162–170, https://doi.org/10.1038/nmeth.2333.Search in Google Scholar PubMed PubMed Central

Marvin, J.S., Scholl, B., Wilson, D.E., Podgorski, K., Kazemipour, A., Müller, J.A., Schoch, S., Quiroz, F.J.U., Rebola, N., Bao, H., et al.. (2018). Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15: 936–939, https://doi.org/10.1038/s41592-018-0171-3.Search in Google Scholar PubMed PubMed Central

Marvin, J.S., Shimoda, Y., Magloire, V., Leite, M., Kawashima, T., Jensen, T.P., Kolb, I., Knott, E.L., Novak, O., Podgorski, K., et al.. (2019). A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16: 763–770, https://doi.org/10.1038/s41592-019-0471-2.Search in Google Scholar PubMed

Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nat. Methods 19: 679–682, https://doi.org/10.1038/s41592-022-01488-1.Search in Google Scholar PubMed PubMed Central

Mohebi, A., Pettibone, J.R., Hamid, A.A., Wong, J.M.T., Vinson, L.T., Patriarchi, T., Tian, L., Kennedy, R.T., and Berke, J.D. (2019). Dissociable dopamine dynamics for learning and motivation. Nature 570: 65–70, https://doi.org/10.1038/s41586-019-1235-y.Search in Google Scholar PubMed PubMed Central

Nagai, T., Sawano, A., Park, E.S., and Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. U.S.A. 98: 3197–3202, https://doi.org/10.1073/pnas.051636098.Search in Google Scholar PubMed PubMed Central

Nakai, J., Ohkura, M., and Imoto, K. (2001). A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19: 137–141, https://doi.org/10.1038/84397.Search in Google Scholar PubMed

Nakamoto, C., Goto, Y., Tomizawa, Y., Fukata, Y., Fukata, M., Harpsøe, K., Gloriam, D.E., Aoki, K., and Takeuchi, T. (2021). A novel red fluorescence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro. Mol. Brain 14: 173, https://doi.org/10.1186/s13041-021-00882-8.Search in Google Scholar PubMed PubMed Central

Nasu, Y., Shen, Y., Kramer, L., and Campbell, R.E. (2021). Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 17: 509–518, https://doi.org/10.1038/s41589-020-00718-x.Search in Google Scholar PubMed

Ozkan, A.D., Gettas, T., Sogata, A., Phaychanpheng, W., Zhou, M., and Lacroix, J.J. (2021). Mechanical and chemical activation of GPR68 probed with a genetically encoded fluorescent reporter. J. Cell Sci. 134: jcs255455, https://doi.org/10.1242/jcs.255455.Search in Google Scholar PubMed PubMed Central

Patriarchi, T., Cho, J.R., Merten, K., Howe, M.W., Marley, A., Xiong, W.H., Folk, R.W., Broussard, G.J., Liang, R., Jang, M.J., et al.. (2018). Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360: eaat4422, https://doi.org/10.1126/science.aat4422.Search in Google Scholar PubMed PubMed Central

Patriarchi, T., Mohebi, A., Sun, J., Marley, A., Liang, R., Dong, C., Puhger, K., Mizuno, G.O., Davis, C.M., Wiltgen, B., et al.. (2020). An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 17: 1147–1155, https://doi.org/10.1038/s41592-020-0936-3.Search in Google Scholar PubMed PubMed Central

Peng, W., Wu, Z., Song, K., Zhang, S., Li, Y., and Xu, M. (2020). Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369: eabb0556, https://doi.org/10.1126/science.abb0556.Search in Google Scholar PubMed

Qian, T., Wang, H., Wang, P., Geng, L., Mei, L., Osakada, T., Wang, L., Tang, Y., Kania, A., Grinevich, V., et al.. (2023). A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. Nat. Biotechnol., https://doi.org/10.1038/s41587-022-01561-2.Search in Google Scholar PubMed

Rappleye, M., Gordon-Fennel, A., Castro, D.C., Matarasso, A.K., Zamorano, C.A., Stine, C., Wait, S.J., Lee, J.D., Siebart, J.C., Suko, A., et al.. (2022). Opto-MASS: a high-throughput engineering platform for genetically encoded fluorescent sensors enabling all-optical in vivo detection of monoamines and opioids (preprint). Bioengineering, https://doi.org/10.1101/2022.06.01.494241.Search in Google Scholar

Rasmussen, S.G.F., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., et al.. (2011). Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477: 549–555, https://doi.org/10.1038/nature10361.Search in Google Scholar PubMed PubMed Central

Sabatini, B.L. and Tian, L. (2020). Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108: 17–32, https://doi.org/10.1016/j.neuron.2020.09.036.Search in Google Scholar PubMed

Shivange, A.V., Borden, P.M., Muthusamy, A.K., Nichols, A.L., Bera, K., Bao, H., Bishara, I., Jeon, J., Mulcahy, M.J., Cohen, B., et al.. (2019). Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. J. Gen. Physiol. 151: 738–757, https://doi.org/10.1085/jgp.201812201.Search in Google Scholar PubMed PubMed Central

Sistemich, L., Galonska, P., Stegemann, J., Ackermann, J., and Kruss, S. (2023). Near-infrared fluorescence lifetime imaging of biomolecules with carbon nanotubes. Angew. Chem., Int. Ed. e202300682, https://doi.org/10.1002/anie.202300682.Search in Google Scholar PubMed

Sun, F., Zeng, J., Jing, M., Zhou, J., Feng, J., Owen, S.F., Luo, Y., Li, F., Wang, H., Yamaguchi, T., et al.. (2018). A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174: 481–496.e19, https://doi.org/10.1016/j.cell.2018.06.042.Search in Google Scholar PubMed PubMed Central

Sun, F., Zhou, J., Dai, B., Qian, T., Zeng, J., Li, X., Zhuo, Y., Zhang, Y., Wang, Y., Qian, C., et al.. (2020). Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 17: 1156–1166, https://doi.org/10.1038/s41592-020-00981-9.Search in Google Scholar PubMed PubMed Central

Tîlmaciu, C.M. and Morris, M.C. (2015). Carbon nanotube biosensors. Front. Chem. 3: 59, https://doi.org/10.3389/fchem.2015.00059.Search in Google Scholar PubMed PubMed Central

Unger, E.K., Keller, J.P., Altermatt, M., Liang, R., Matsui, A., Dong, C., Hon, O.J., Yao, Z., Sun, J., Banala, S., et al.. (2020). Directed evolution of a selective and sensitive serotonin sensor via machine learning. Cell 183: 1986–2002.e26, https://doi.org/10.1016/j.cell.2020.11.040.Search in Google Scholar PubMed PubMed Central

Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F., and Babu, M.M. (2013). Molecular signatures of G-protein-coupled receptors. Nature 494: 185–194, https://doi.org/10.1038/nature11896.Search in Google Scholar PubMed

Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al.. (2001). The sequence of the human genome. Science 291: 1304–1351, https://doi.org/10.1126/science.1058040.Search in Google Scholar PubMed

Wan, J., Peng, W., Li, X., Qian, T., Song, K., Zeng, J., Deng, F., Hao, S., Feng, J., Zhang, P., et al.. (2021). A genetically encoded sensor for measuring serotonin dynamics. Nat. Neurosci. 24: 746–752, https://doi.org/10.1038/s41593-021-00823-7.Search in Google Scholar PubMed PubMed Central

Wang, H., Qian, T., Zhao, Y., Zhuo, Y., Wu, C., Osakada, T., Chen, P., Ren, H., Yan, Y., Geng, L., et al.. (2022). A toolkit of highly selective and sensitive genetically encoded neuropeptide sensors (preprint). Neuroscience, https://doi.org/10.1101/2022.03.26.485911.Search in Google Scholar

Wingler, L.M. and Lefkowitz, R.J. (2020). Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol. 30: 736–747, https://doi.org/10.1016/j.tcb.2020.06.002.Search in Google Scholar PubMed PubMed Central

Wu, J., Abdelfattah, A.S., Zhou, H., Ruangkittisakul, A., Qian, Y., Ballanyi, K., and Campbell, R.E. (2018). Genetically encoded glutamate indicators with altered color and topology. ACS Chem. Biol. 13: 1832–1837, https://doi.org/10.1021/acschembio.7b01085.Search in Google Scholar PubMed

Wu, Z., Cui, Y., Wang, H., Song, K., Yuan, Z., Dong, A., Wu, H., Wan, Y., Pan, S., Peng, W., et al.. (2020). A GRAB sensor reveals activity-dependent non-vesicular somatodendritic adenosine release (preprint). Neuroscience, https://doi.org/10.1101/2020.05.04.075564.Search in Google Scholar

Wu, Z., He, K., Chen, Y., Li, H., Pan, S., Li, B., Liu, T., Xi, F., Deng, F., Wang, H., et al.. (2022a). A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 110: 770–782.e5, https://doi.org/10.1016/j.neuron.2021.11.027.Search in Google Scholar PubMed

Wu, Z., Lin, D., and Li, Y. (2022b). Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat. Rev. Neurosci. 23: 257–274, https://doi.org/10.1038/s41583-022-00577-6.Search in Google Scholar PubMed

Wu, Z., Cui, Y., Wang, H., Wu, H., Wan, Y., Li, B., Wang, L., Pan, S., Peng, W., Dong, A., et al.. (2023). Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Proc. Natl. Acad. Sci. U.S.A. 120: e2212387120, https://doi.org/10.1073/pnas.2212387120.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Rózsa, M., Liang, Y., Bushey, D., Wei, Z., Zheng, J., Reep, D., Broussard, G.J., Tsang, A., Tsegaye, G., et al.. (2023). Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615: 884–891, https://doi.org/10.1038/s41586-023-05828-9.Search in Google Scholar PubMed PubMed Central

Received: 2023-04-05
Accepted: 2023-05-15
Published Online: 2023-05-30
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2023-0175/html
Scroll to top button