Abstract
Nucleic acid chemistry is a rapidly evolving field, and the need for novel nucleotide modifications and artificial nucleotide building blocks for diagnostic and therapeutic use, material science or for studying cellular processes continues unabated. This review focusses on the development and application of unnatural base pairs as part of an expanded genetic alphabet. Not only recent developments in “nature-like” artificial base pairs are presented, but also current synthetic methods to get access to C-glycosidic nucleotides. Wide-ranging viability in synthesis is a prerequisite for the successful use of unnatural base pairs in a broader spectrum and will be discussed.
Funding source: Boehringer Ingelheim Foundation
Award Identifier / Grant number: Plus 3 Grant
Funding source: Juergen Manchot Foundation
Award Identifier / Grant number: PhD stipend to P.K.W.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the Boehringer Ingelheim Foundation (Plus 3 Grant) and Juergen Manchot Foundation (PhD stipend to P.K.W.).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Adak, L., Kawamura, S., Toma, G., Takenaka, T., Isozaki, K., Takaya, H., Orita, A., Li, H.C., Shing, T.K.M., and Nakamura, M. (2017). Synthesis of aryl C-glycosides via iron-catalyzed cross coupling of halosugars: stereoselective anomeric arylation of glycosyl radicals. J. Am. Chem. Soc. 139: 10693–10701, https://doi.org/10.1021/jacs.7b03867.Suche in Google Scholar PubMed
Arendt, K.M. and Doyle, A.G. (2015). Dialkyl ether formation by nickel-catalyzed cross-coupling of acetals and aryl iodides. Angew. Chem., Int. Ed. 54: 9876–9880, https://doi.org/10.1002/anie.201503936.Suche in Google Scholar PubMed PubMed Central
Bai, S.-T., Xiong, D.-C., Niu, Y., Wu, Y.-F., and Ye, X.-S. (2015). Synthesis of novel N-glycoside derivatives via CuSCN-catalyzed reactions and their SGLT2 inhibition activities. Tetrahedron 71: 4909–4919, https://doi.org/10.1016/j.tet.2015.05.108.Suche in Google Scholar
Bain, J., Switzer, C., Chamberlin, R., and Benner, S.A. (1992). Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature 356: 537–539, https://doi.org/10.1038/356537a0.Suche in Google Scholar PubMed
Bębenek, A. and Ziuzia-Graczyk, I. (2018). Fidelity of DNA replication—a matter of proofreading. Curr. Genet. 64: 985–996, https://doi.org/10.1007/s00294-018-0820-1.Suche in Google Scholar PubMed PubMed Central
Betz, K., Malyshev, D.A., Lavergne, T., Welte, W., Diederichs, K., Dwyer, T.J., Ordoukhanian, P., Romesberg, F.E., and Marx, A. (2012). KlenTaq polymerase replicates unnatural base pairs by inducing a Watson–Crick geometry. Nature Chem. Biol. 8: 612–614, https://doi.org/10.1038/nchembio.966.Suche in Google Scholar PubMed PubMed Central
Betz, K., Malyshev, D.A., Lavergne, T., Welte, W., Diederichs, K., Romesberg, F.E., and Marx, A. (2013). Structural insights into DNA replication without hydrogen bonds. J. Am. Chem. Soc. 135: 18637–18643, https://doi.org/10.1021/ja409609j.Suche in Google Scholar PubMed PubMed Central
Bornewasser, L., Domnick, C., and Kath-Schorr, S. (2022). Stronger together for in-cell translation: natural and unnatural base modified mRNA. Chem. Sci. 13: 4753–4761, https://doi.org/10.1039/d2sc00670g.Suche in Google Scholar PubMed PubMed Central
Bornewasser, L. and Kath-Schorr, S. (2022). Preparation of site-specifically spin-labeled RNA by in vitro transcription using an expanded genetic alphabet. Methods Mol. Biol. 2439: 223–240, https://doi.org/10.1007/978-1-0716-2047-2_15.Suche in Google Scholar PubMed
Breslauer, K.J., Frank, R., Blöcker, H., and Marky, L.A. (1986). Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83: 3746–3750, https://doi.org/10.1073/pnas.83.11.3746.Suche in Google Scholar PubMed PubMed Central
Burgers, P.M. (2009). Polymerase dynamics at the eukaryotic DNA replication fork. J. Biol. Chem. 284: 4041–4045, https://doi.org/10.1074/jbc.r800062200.Suche in Google Scholar
Churchill, C.D.M. and Wetmore, S.D. (2009). Noncovalent Interactions Involving Histidine: the effect of charge on π–π stacking and T-shaped interactions with the DNA nucleobases. J. Phys. Chem. B 113: 16046–16058, https://doi.org/10.1021/jp907887y.Suche in Google Scholar PubMed
Cooper, V.R., Thonhauser, T., and Langreth, D.C. (2008). An application of the van der Waals density functional: hydrogen bonding and stacking interactions between nucleobases. Chem. Phys. 128, https://doi.org/10.1063/1.2924133.Suche in Google Scholar PubMed
Cui, S., Yu, J., Kühner, F., Schulten, K., and Gaub, H.E. (2007). Double-stranded DNA dissociates into single strands when dragged into a poor solvent. J. Am. Chem. Soc. 129: 14710–14716, https://doi.org/10.1021/ja074776c.Suche in Google Scholar PubMed
De Clercq, E. (2016). C-Nucleosides to be revisited. J. Med. Chem. 59: 2301–2311, https://doi.org/10.1021/acs.jmedchem.5b01157.Suche in Google Scholar PubMed
Depmeier, H., Hoffmann, E., Bornewasser, L., and Kath-Schorr, S. (2021). Strategies for covalent labeling of long RNAs. Chembiochem 22: 2826–2847, https://doi.org/10.1002/cbic.202100161.Suche in Google Scholar PubMed PubMed Central
Dien, V.T., Holcomb, M., Feldman, A.W., Fischer, E.C., Dwyer, T.J., and Romesberg, F.E. (2018). Progress toward a semi-synthetic organism with an unrestricted expanded genetic alphabet. J. Am. Chem. Soc. 140: 16115–16123, https://doi.org/10.1021/jacs.8b08416.Suche in Google Scholar PubMed PubMed Central
Ding, Y.-N., Li, N., Huang, Y.-C., Shi, W.-Y., Zheng, N., Wang, C.-T., An, Y., Liu, X.-Y., and Liang, Y.-M. (2022). One-pot stereoselective synthesis of 2,3-diglycosylindoles and tryptophan-C-glycosides via palladium-catalyzed C–H glycosylation of indole and tryptophan. Org. Lett. 24: 2381–2386, https://doi.org/10.1021/acs.orglett.2c00602.Suche in Google Scholar PubMed
Domnick, C., Eggert, F., and Kath-Schorr, S. (2015). Site-specific enzymatic introduction of a norbornene modified unnatural base into RNA and application in post-transcriptional labeling. Chem. Commun. 51: 8253–8256, https://doi.org/10.1039/c5cc01765c.Suche in Google Scholar PubMed
Domnick, C., Eggert, F., Wuebben, C., Bornewasser, L., Hagelueken, G., Schiemann, O., and Kath-Schorr, S. (2020). EPR distance measurements on long non-coding RNAs empowered by genetic alphabet expansion transcription. Angew. Chem., Int. Ed. 59: 7891–7896, https://doi.org/10.1002/anie.201916447.Suche in Google Scholar PubMed PubMed Central
Domnick, C., Hagelueken, G., Eggert, F., Schiemann, O., and Kath-Schorr, S. (2019). Posttranscriptional spin labeling of RNA by tetrazine-based cycloaddition. Org. Biomol. Chem. 17: 1805–1808, https://doi.org/10.1039/c8ob02597e.Suche in Google Scholar PubMed
Eggert, F. and Kath-Schorr, S. (2016). A cyclopropene-modified nucleotide for site-specific RNA labeling using genetic alphabet expansion transcription. Chem. Commun. 52: 7284–7287, https://doi.org/10.1039/c6cc02321e.Suche in Google Scholar PubMed
Eggert, F., Kulikov, K., Domnick, C., Leifels, P., and Kath-Schorr, S. (2017). Iluminated by foreign letters – strategies for site-specific cyclopropene modification of large functional RNAs via in vitro transcription. Methods 120: 17–27, https://doi.org/10.1016/j.ymeth.2017.04.021.Suche in Google Scholar PubMed
Eggert, F., Kurscheidt, K., Hoffmann, E., and Kath‐Schorr, S. (2019). Towards reverse transcription with an expanded genetic alphabet. ChemBioChem 20: 1642–1645, https://doi.org/10.1002/cbic.201800808.Suche in Google Scholar PubMed
Ellington, A.D. and Szostak, J.W. (1992). Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355: 850–852, https://doi.org/10.1038/355850a0.Suche in Google Scholar PubMed
Endeward, B., Hu, Y., Bai, G., Liu, G., Prisner, T.F., and Fang, X. (2022). Long-range distance determination in fully deuterated RNA with pulsed EPR spectroscopy. Biophys. J. 121: 37–43, https://doi.org/10.1016/j.bpj.2021.12.007.Suche in Google Scholar PubMed PubMed Central
Endeward, B., Marko, A., Denysenkov, V.P., Sigurdsson, S.T., and Prisner, T.F. (2015). Advanced EPR methods for studying conformational dynamics of nucleic acids. Methods Enzymol. 564: 403–425, https://doi.org/10.1016/bs.mie.2015.06.007.Suche in Google Scholar PubMed
Feldman, A.W., Dien, V.T., Karadeema, R.J., Fischer, E.C., You, Y., Anderson, B.A., Krishnamurthy, R., Chen, J.S., Li, L., and Romesberg, F.E. (2019). Optimization of replication, transcription, and translation in a semi-synthetic organism. J. Am. Chem. Soc. 141: 10644–10653, https://doi.org/10.1021/jacs.9b02075.Suche in Google Scholar PubMed PubMed Central
Feldman, A.W. and Romesberg, F.E. (2017). In vivo structure–activity relationships and optimization of an unnatural base pair for replication in a semi-synthetic organism. J. Am. Chem. Soc. 139: 11427–11433, https://doi.org/10.1021/jacs.7b03540.Suche in Google Scholar PubMed PubMed Central
Fischer, E. and Helferich, B. (1922). Synthetische glucoside der Purine. In: Fischer, E. and Bergmann, M. (Eds.), Untersuchungen Über Kohlenhydrate und Fermente II (1908–1919). Springer Berlin Heidelberg, Berlin, Heidelberg.10.1007/978-3-642-99497-5Suche in Google Scholar
Georgiadis, M.M., Singh, I., Kellett, W.F., Hoshika, S., Benner, S.A., and Richards, N.G. (2015). Crystal structures of non-natural nucleobase pairs in A-and B-DNA. J. Am. Chem. Soc. 137: 6947–6955, https://doi.org/10.1021/jacs.5b03482.Suche in Google Scholar PubMed PubMed Central
Ghouilem, J., De Robichon, M., Le Bideau, F., Ferry, A., and Messaoudi, S. (2021). Emerging organometallic methods for the synthesis of C-branched (Hetero)aryl, alkenyl, and alkyl glycosides: C–H functionalization and dual photoredox approaches. Eur. J. Chem. 27: 491–511, https://doi.org/10.1002/chem.202003267.Suche in Google Scholar PubMed
Gong, H., Sinisi, R., and Gagné, M.R. (2007). A room temperature Negishi cross-coupling approach to C-alkyl glycosides. J. Am. Chem. Soc. 129: 1908–1909, https://doi.org/10.1021/ja068950t.Suche in Google Scholar PubMed
Gopinath, S.C.B. (2007). Methods developed for SELEX. Anal. Bioanal. Chem. 387: 171–182, https://doi.org/10.1007/s00216-006-0826-2.Suche in Google Scholar PubMed
Guckian, K.M., Schweitzer, B.A., Ren, R.X.F., Sheils, C.J., Tahmassebi, D.C., and Kool, E.T. (2000). Factors contributing to aromatic stacking in water: evaluation in the context of DNA. J. Am. Chem. Soc. 122: 2213–2222, https://doi.org/10.1021/ja9934854.Suche in Google Scholar PubMed PubMed Central
Guo, J., Wang, S., Dai, N., Teo, Y.N., and Kool, E.T. (2011). Multispectral labeling of antibodies with polyfluorophores on a DNA backbone and application in cellular imaging. Proc. Natl. Acad. Sci. USA 108: 3493–3498, https://doi.org/10.1073/pnas.1017349108.Suche in Google Scholar PubMed PubMed Central
Hamashima, K., Kimoto, M., and Hirao, I. (2018). Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology. Curr. Opin. Chem. Biol. 46: 108–114, https://doi.org/10.1016/j.cbpa.2018.07.017.Suche in Google Scholar PubMed
Hirao, I. (2006). Unnatural base pair systems for DNA/RNA-based biotechnology. Curr. Opin. Chem. Biol. 10: 622–627, https://doi.org/10.1016/j.cbpa.2006.09.021.Suche in Google Scholar PubMed
Hirao, I., Kimoto, M., Mitsui, T., Fujiwara, T., Kawai, R., Sato, A., Harada, Y., and Yokoyama, S. (2006). An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Nat. Methods 3: 729–735, https://doi.org/10.1038/nmeth915.Suche in Google Scholar PubMed
Hirao, I., Ohtsuki, T., Fujiwara, T., Mitsui, T., Yokogawa, T., Okuni, T., Nakayama, H., Takio, K., Yabuki, T., Kigawa, T., et al.. (2002). An unnatural base pair for incorporating amino acid analogs into proteins. Nat. Biotechnol. 20: 177–182, https://doi.org/10.1038/nbt0202-177.Suche in Google Scholar PubMed
Horlacher, J., Hottiger, M., Podust, V.N., Hübscher, U., and Benner, S.A. (1995). Recognition by viral and cellular DNA polymerases of nucleosides bearing bases with nonstandard hydrogen bonding patterns. Proc. Natl. Acad. Sci. USA 92: 6329–6333, https://doi.org/10.1073/pnas.92.14.6329.Suche in Google Scholar PubMed PubMed Central
Hoshika, S., Leal, N.A., Kim, M.-J., Kim, M.-S., Karalkar, N.B., Kim, H.-J., Bates, A.M., Watkins, N.E.Jr, Santalucia, H.A., Meyer, A.J., et al.. (2019). Hachimoji DNA and RNA: a genetic system with eight building blocks. Science 363: 884–887, https://doi.org/10.1126/science.aat0971.Suche in Google Scholar PubMed PubMed Central
Hu, Y., Wang, Y., Singh, J., Sun, R., Xu, L., Niu, X., Huang, K., Bai, G., Liu, G., Zuo, X., et al.. (2022). Phosphorothioate-based site-specific labeling of large RNAs for structural and dynamic studies. ACS Chem. Biol. 17: 2448–2460, https://doi.org/10.1021/acschembio.2c00199.Suche in Google Scholar PubMed PubMed Central
Hunter, C.A. (1993). Sequence-dependent DNA structure: the role of base stacking interactions. J. Mol. Biol. 230: 1025–1054, https://doi.org/10.1006/jmbi.1993.1217.Suche in Google Scholar PubMed
Hunter, C.A. and Sanders, J.K.M. (1990). The nature of π–π interactions. J. Am. Chem. Soc. 112: 5525–5534, https://doi.org/10.1021/ja00170a016.Suche in Google Scholar
Hutter, D. and Benner, S.A. (2003). Expanding the genetic alphabet: non-epimerizing nucleoside with the py DDA hydrogen-bonding pattern. J. Org. Chem. 68: 9839–9842, https://doi.org/10.1021/jo034900k.Suche in Google Scholar PubMed
Hwang, J.W., Li, P., and Shimizu, K.D. (2017). Synergy between experimental and computational studies of aromatic stacking interactions. Org. Biomol. Chem. 15: 1554–1564, https://doi.org/10.1039/c6ob01985d.Suche in Google Scholar PubMed
Italia, J.S., Addy, P.S., Wrobel, C.J., Crawford, L.A., Lajoie, M.J., Zheng, Y., and Chatterjee, A. (2017). An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat. Chem. Biol. 13: 446–450, https://doi.org/10.1038/nchembio.2312.Suche in Google Scholar PubMed
Kamble, N.R., Granz, M., Prisner, T.F., and Sigurdsson, S.T. (2016). Noncovalent and site-directed spin labeling of duplex RNA. Chem. Commun. 52: 14442–14445, https://doi.org/10.1039/c6cc08387k.Suche in Google Scholar PubMed
Kimoto, M. and Hirao, I. (2020). Genetic alphabet expansion technology by creating unnatural base pairs. Chem. Soc. Rev. 49: 7602–7626, https://doi.org/10.1039/d0cs00457j.Suche in Google Scholar PubMed
Kimoto, M., Kawai, R., Mitsui, T., Yokoyama, S., and Hirao, I. (2009). An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res. 37: e14, https://doi.org/10.1093/nar/gkn956.Suche in Google Scholar PubMed PubMed Central
Kimoto, M., Matsunaga, K.-I., and Hirao, I. (2016). DNA aptamer generation by genetic alphabet expansion SELEX (ExSELEX) using an unnatural base pair system. Nucleic acid aptamers: selection, characterization, and application. Springer Science+Business Media, New York.10.1007/978-1-4939-3197-2_4Suche in Google Scholar PubMed
Kimoto, M., Yamashige, R., Matsunaga, K.-I., Yokoyama, S., and Hirao, I. (2013). Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 31: 453–457, https://doi.org/10.1038/nbt.2556.Suche in Google Scholar PubMed
Klug, S.J. and Famulok, M. (1994). All you wanted to know about Selex. Mol. Biol. Rep. 20: 97–107, https://doi.org/10.1007/bf00996358.Suche in Google Scholar PubMed
Krstic, I., Hansel, R., Romainczyk, O., Engels, J.W., Dotsch, V., and Prisner, T.F. (2011). Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew. Chem., Int. Ed. 50: 5070–5074, https://doi.org/10.1002/anie.201100886.Suche in Google Scholar PubMed
Kun, S., Bokor, É., Sipos, Á., Docsa, T., and Somsák, L. (2018). Synthesis of new C- and N-β-d-glucopyranosyl derivatives of imidazole, 1,2,3-triazole and tetrazole, and their evaluation as inhibitors of glycogen phosphorylase. Molecules 23: 666, https://doi.org/10.3390/molecules23030666.Suche in Google Scholar PubMed PubMed Central
Kurahayashi, K., Hanaya, K., Sugai, T., Hirai, G., and Higashibayashi, S. (2023). Copper-catalyzed stereoselective borylation and palladium-catalyzed stereospecific cross-coupling to give aryl C-glycosides. Eur. J. Chem. 29: e202203376, https://doi.org/10.1002/chem.202203376.Suche in Google Scholar PubMed
Lavergne, T., Degardin, M., Malyshev, D.A., Quach, H.T., Dhami, K., Ordoukhanian, P., and Romesberg, F.E. (2013). Expanding the scope of replicable unnatural DNA: stepwise optimization of a predominantly hydrophobic base pair. J. Am. Chem. Soc. 135: 5408–5419, https://doi.org/10.1021/ja312148q.Suche in Google Scholar PubMed PubMed Central
Lavergne, T., Lamichhane, R., Malyshev, D.A., Li, Z., Li, L., Sperling, E., Williamson, J.R., Millar, D.P., and Romesberg, F.E. (2016). FRET Characterization of complex conformational changes in a large 16S ribosomal RNA fragment site-specifically labeled using unnatural base pairs. ACS Chem. Biol. 11: 1347–1353, https://doi.org/10.1021/acschembio.5b00952.Suche in Google Scholar PubMed PubMed Central
Leconte, A.M., Hwang, G.T., Matsuda, S., Capek, P., Hari, Y., and Romesberg, F.E. (2008). Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. J. Am. Chem. Soc. 130: 2336–2343, https://doi.org/10.1021/ja078223d.Suche in Google Scholar PubMed PubMed Central
Lee, K.H., Hamashima, K., Kimoto, M., and Hirao, I. (2018). Genetic alphabet expansion biotechnology by creating unnatural base pairs. Curr. Opin. Biotechnol. 51: 8–15, https://doi.org/10.1016/j.copbio.2017.09.006.Suche in Google Scholar PubMed
Lemaire, S., Houpis, I.N., Xiao, T., Li, J., Digard, E., Gozlan, C., Liu, R., Gavryushin, A., Diène, C., Wang, Y., et al.. (2012). Stereoselective C-glycosylation reactions with arylzinc reagents. Org. Lett. 14: 1480–1483, https://doi.org/10.1021/ol300220p.Suche in Google Scholar PubMed
Lewis, M.D., Cha, J.K., and Kishi, Y. (1982). Highly stereoselective approaches to α- and β-C-glycopyranosides. J. Am. Chem. Soc. 104: 4976–4978, https://doi.org/10.1021/ja00382a053.Suche in Google Scholar
Li, L., Degardin, M., Lavergne, T., Malyshev, D.A., Dhami, K., Ordoukhanian, P., and Romesberg, F.E. (2014). Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. J. Am. Chem. Soc. 136: 826–829, https://doi.org/10.1021/ja408814g.Suche in Google Scholar PubMed PubMed Central
Li, Y., Wang, Z., Li, L., Tian, X., Shao, F., and Li, C. (2022). Chemoselective and diastereoselective synthesis of C-aryl nucleoside analogues by nickel-catalyzed cross-coupling of furanosyl acetates with aryl iodides. Angew. Chem., Int. Ed. 61: e202110391, https://doi.org/10.1002/anie.202110391.Suche in Google Scholar PubMed
Liang, C., Ju, W., Ding, S., Sun, H., and Mao, G. (2017). Effective synthesis of nucleosides utilizing O-Acetyl-Glycosyl chlorides as glycosyl donors in the absence of catalyst: mechanism revision and application to silyl-Hilbert-Johnson reaction. Molecules 22: 84, https://doi.org/10.3390/molecules22010084.Suche in Google Scholar PubMed PubMed Central
Liu, J. and Gong, H. (2018). Stereoselective preparation of α-C-Vinyl/Aryl glycosides via nickel-catalyzed reductive coupling of glycosyl halides with vinyl and aryl halides. Org. Lett. 20: 7991–7995, https://doi.org/10.1021/acs.orglett.8b03567.Suche in Google Scholar PubMed
Liu, J., Lei, C., and Gong, H. (2019). Nickel-catalyzed reductive coupling of glucosyl halides with aryl/vinyl halides enabling β-selective preparation of C-aryl/vinyl glucosides. Sci. China Chem. 62: 1492–1496, https://doi.org/10.1007/s11426-019-9501-4.Suche in Google Scholar
Ma, Y., Liu, S., Xi, Y., Li, H., Yang, K., Cheng, Z., Wang, W., and Zhang, Y. (2019). Highly stereoselective synthesis of aryl/heteroaryl-C-nucleosides via the merger of photoredox and nickel catalysis. Chem. Commun. 55: 14657–14660, https://doi.org/10.1039/c9cc07184a.Suche in Google Scholar PubMed
Malyshev, D.A., Dhami, K., Lavergne, T., Chen, T., Dai, N., Foster, J.M., Corrêa, I.R., and Romesberg, F.E. (2014). A semi-synthetic organism with an expanded genetic alphabet. Nature 509: 385–388, https://doi.org/10.1038/nature13314.Suche in Google Scholar PubMed PubMed Central
Malyshev, D.A. and Romesberg, F.E. (2015). The expanded genetic alphabet. Angew. Chem., Int. Ed. 54: 11930–11944, https://doi.org/10.1002/anie.201502890.Suche in Google Scholar
Mamais, M., Degli Esposti, A., Kouloumoundra, V., Gustavsson, T., Monti, F., Venturini, A., Chrysina, E.D., Markovitsi, D., and Gimisis, T. (2017). A new potent inhibitor of glycogen phosphorylase reveals the basicity of the catalytic site. Eur. J. Chem. 23: 8800–8805, https://doi.org/10.1002/chem.201701591.Suche in Google Scholar
Mannack, L., Eising, S., and Rentmeister, A. (2016). Current techniques for visualizing RNA in cells. F1000Research 5: 775, https://doi.org/10.12688/f1000research.8151.1.Suche in Google Scholar
Martin, R.E., Pannier, M., Diederich, F., Gramlich, V., Hubrich, M., and Spiess, H.W. (1998). Determination of end-to-end distances in a series of TEMPO diradicals of up to 2.8 nm length with a new four-pulse double electron electron resonance experiment. Angew. Chem., Int. Ed. 37: 2833–2837, https://doi.org/10.1002/(sici)1521-3773(19981102)37:20<2833::aid-anie2833>3.0.co;2-7.10.1002/(SICI)1521-3773(19981102)37:20<2833::AID-ANIE2833>3.0.CO;2-7Suche in Google Scholar
Marx, A. and Betz, K. (2020). The structural basis for processing of unnatural base pairs by DNA polymerases. Eur. J. Chem. 26: 3446–3463, https://doi.org/10.1002/chem.201903525.Suche in Google Scholar
Matherly, L.H., Wilson, M.R., and Hou, Z. (2014). The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab. Dispos. 42: 632–649, https://doi.org/10.1124/dmd.113.055723.Suche in Google Scholar
Matsuda, S., Henry, A.A., and Romesberg, F.E. (2006). Optimization of unnatural base pair packing for polymerase recognition. J. Am. Chem. Soc. 128: 6369–6375, https://doi.org/10.1021/ja057575m.Suche in Google Scholar
Matulic-Adamic, J., Beigelman, L., Portmann, S., Egli, M., and Usman, N. (1996). Synthesis and structure of 1-deoxy-1-phenyl-β-D-ribofuranose and its incorporation into oligonucleotides. J. Org. Chem. 61: 3909–3911, https://doi.org/10.1021/jo960091b.Suche in Google Scholar
Mayr, C. (2017). Regulation by 3’-untranslated regions. Annu. Rev. Genet. 51: 171–194, https://doi.org/10.1146/annurev-genet-120116-024704.Suche in Google Scholar
McCain, M.D., Meyer, A.S., Schultz, S.S., Glekas, A., and Spratt, T.E. (2005). Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli. Biochem 44: 5647–5659, https://doi.org/10.1021/bi047460f.Suche in Google Scholar
Miller, E.M. and Walczak, M.A. (2021). Light-mediated cross-coupling of anomeric trifluoroborates. Org. Lett. 23: 4289–4293, https://doi.org/10.1021/acs.orglett.1c01035.Suche in Google Scholar PubMed PubMed Central
Milligan, J.F., Groebe, D.R., Witherell, G.W., and Uhlenbeck, O.C. (1987). Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15: 8783–8798, https://doi.org/10.1093/nar/15.21.8783.Suche in Google Scholar PubMed PubMed Central
Milov, A., Salikhov, K., and Shirov, M. (1981). Application of ELDOR in electron-spin echo for paramagnetic center space distribution in solids. Fiz. Tverd. Tela 23: 975–982.Suche in Google Scholar
Mitsui, T., Kitamura, A., Kimoto, M., To, T., Sato, A., Hirao, I., and Yokoyama, S. (2003). An unnatural hydrophobic base pair with shape complementarity between pyrrole-2-carbaldehyde and 9-methylimidazo [(4, 5)-b] pyridine. J. Am. Chem. Soc. 125: 5298–5307, https://doi.org/10.1021/ja028806h.Suche in Google Scholar PubMed
Morales, J.C. and Kool, E.T. (1998). Efficient replication between non-hydrogen-bonded nucleoside shape analogs. Nat. Struct. Mol. Biol. 5: 950–954, https://doi.org/10.1038/2925.Suche in Google Scholar PubMed
Morales, J.C. and Kool, E.T. (1999). Minor groove interactions between polymerase and DNA: more essential to replication than Watson–Crick hydrogen bonds? J. Am. Chem. Soc. 121: 2323, https://doi.org/10.1021/ja983502+.10.1021/ja983502+Suche in Google Scholar PubMed PubMed Central
Moran, S., Ren, R.X.-F., and Kool, E.T. (1997). A thymidine triphosphate shape analog lacking Watson–Crick pairing ability is replicated with high sequence selectivity. Proc. Natl. Acad. Sci. USA 94: 10506–10511, https://doi.org/10.1073/pnas.94.20.10506.Suche in Google Scholar PubMed PubMed Central
Nance, K.D. and Meier, J.L. (2021). Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent. Sci. 7: 748–756, https://doi.org/10.1021/acscentsci.1c00197.Suche in Google Scholar PubMed PubMed Central
Nicolas, L., Izquierdo, E., Angibaud, P., Stansfield, I., Meerpoel, L., Reymond, S., and Cossy, J. (2013). Cobalt-catalyzed diastereoselective synthesis of C-furanosides. Total synthesis of (−)-isoaltholactone. J. Org. Chem. 78: 11807–11814, https://doi.org/10.1021/jo401845q.Suche in Google Scholar PubMed
Obradors, C., Mitschke, B., Aukland, M.H., Leutzsch, M., Grossmann, O., Brunen, S., Schwengers, S.A., and List, B. (2022). Direct and catalytic C-glycosylation of arenes: expeditious synthesis of the Remdesivir nucleoside. Angew. Chem., Int. Ed. 61: e202114619, https://doi.org/10.1002/anie.202114619.Suche in Google Scholar PubMed PubMed Central
Ogawa, A.K., Wu, Y., Mcminn, D.L., Liu, J., Schultz, P.G., and Romesberg, F.E. (2000). Efforts toward the expansion of the genetic alphabet: information storage and replication with unnatural hydrophobic base pairs. J. Am. Chem. Soc. 122: 3274–3287, https://doi.org/10.1021/ja9940064.Suche in Google Scholar
Oh, J., Kimoto, M., Xu, H., Chong, J., Hirao, I., and Wang, D. (2023). Structural basis of transcription recognition of a hydrophobic unnatural base pair by T7 RNA polymerase. Nat. Commun. 14: 195, https://doi.org/10.1038/s41467-022-35755-8.Suche in Google Scholar PubMed PubMed Central
Oh, J., Shin, J., Unarta, I.C., Wang, W., Feldman, A.W., Karadeema, R.J., Xu, L., Xu, J., Chong, J., Krishnamurthy, R., et al.. (2021). Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II. Nat. Chem. Biol. 17: 906–914, https://doi.org/10.1038/s41589-021-00817-3.Suche in Google Scholar PubMed PubMed Central
Okamoto, I., Miyatake, Y., Kimoto, M., and Hirao, I. (2016). High fidelity, efficiency and functionalization of Ds–Px unnatural base pairs in PCR amplification for a genetic alphabet expansion system. ACS Synth. Biol. 5: 1220–1230, https://doi.org/10.1021/acssynbio.5b00253.Suche in Google Scholar PubMed
Ouaray, Z., Benner, S.A., Georgiadis, M.M., and Richards, N.G. (2020). Building better polymerases: engineering the replication of expanded genetic alphabets. J. Biol. Chem. 295: 17046–17059, https://doi.org/10.1074/jbc.rev120.013745.Suche in Google Scholar
Park, J.W., Lagniton, P.N.P., Liu, Y., and Xu, R.H. (2021). mRNA vaccines for COVID-19: what, why and how. Int. J. Biol. Sci. 17: 1446–1460, https://doi.org/10.7150/ijbs.59233.Suche in Google Scholar PubMed PubMed Central
Petersheim, M. and Turner, D.H. (1983). Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. Biochemistry 22: 256–263, https://doi.org/10.1021/bi00271a004.Suche in Google Scholar PubMed
Piccirilli, J.A., Benner, S.A., Krauch, T., Moroney, S.E., and Benner, S.A. (1990). Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343: 33–37, https://doi.org/10.1038/343033a0.Suche in Google Scholar PubMed
Piton, N., Mu, Y., Stock, G., Prisner, T.F., Schiemann, O., and Engels, J.W. (2007). Base-specific spin-labeling of RNA for structure determination. Nucleic Acids Res. 35: 3128–3143, https://doi.org/10.1093/nar/gkm714.Suche in Google Scholar
Piton, N., Schiemann, O., Mu, Y., Stock, G., Prisner, T., and Engels, J.W. (2005). Synthesis of spin-labeled RNAs for long range distance measurements by peldor. Nucleos. Nucleot. Nucleic Acids 24: 771–775, https://doi.org/10.1081/ncn-200060139.Suche in Google Scholar PubMed
Rahman, M.T., Uddin, M.S., Sultana, R., Moue, A., and Setu, M. (2013). Polymerase chain reaction (PCR): a short review. Anwer Khan Mod. Med. Coll. J. 4: 30–36, https://doi.org/10.3329/akmmcj.v4i1.13682.Suche in Google Scholar
Raviola, C., Protti, S., Ravelli, D., and Fagnoni, M. (2019). Photogenerated acyl/alkoxycarbonyl/carbamoyl radicals for sustainable synthesis. Green Chem. 21: 748–764, https://doi.org/10.1039/c8gc03810d.Suche in Google Scholar
Rich, A. (1962). On the problems of evolution and biochemical information transfer, Horizons in biochemistry. Academic Press, New York.Suche in Google Scholar
Schiemann, O., Cekan, P., Margraf, D., Prisner, T.F., and Sigurdsson, S.T. (2009). Relative orientation of rigid nitroxides by PELDOR: beyond distance measurements in nucleic acids. Angew. Chem., Int. Ed. 48: 3292–3295, https://doi.org/10.1002/anie.200805152.Suche in Google Scholar PubMed
Schiemann, O., Piton, N., Plackmeyer, J., Bode, B.E., Prisner, T.F., and Engels, J.W. (2007). Spin labeling of oligonucleotides with the nitroxide TPA and use of PELDOR, a pulse EPR method, to measure intramolecular distances. Nat. Protoc. 2: 904–923, https://doi.org/10.1038/nprot.2007.97.Suche in Google Scholar PubMed
Schiemann, O., Weber, A., Edwards, T.E., Prisner, T.F., and Sigurdsson, S.T. (2003). Nanometer distance measurements on RNA using PELDOR. J. Am. Chem. Soc. 125: 3434–3435, https://doi.org/10.1021/ja0274610.Suche in Google Scholar PubMed
Schweitzer, B.A. and Kool, E.T. (1994). Aromatic nonpolar nucleosides as hydrophobic isosteres of pyrimidines and purine nucleosides. J. Org. Chem. 59: 7238–7242, https://doi.org/10.1021/jo00103a013.Suche in Google Scholar PubMed PubMed Central
Schweitzer, B.A. and Kool, E.T. (1995). Hydrophobic, non-hydrogen-bonding bases and base pairs in DNA. J. Am. Chem. Soc. 117: 1863–1872, https://doi.org/10.1021/ja00112a001.Suche in Google Scholar PubMed PubMed Central
Seo, Y.J., Malyshev, D.A., Lavergne, T., Ordoukhanian, P., and Romesberg, F.E. (2011). Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs. J. Am. Chem. Soc. 133: 19878–19888, https://doi.org/10.1021/ja207907d.Suche in Google Scholar PubMed PubMed Central
Someya, T., Ando, A., Kimoto, M., and Hirao, I. (2015). Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry. Nucleic Acids Res. 43: 6665–6676, https://doi.org/10.1093/nar/gkv638.Suche in Google Scholar PubMed PubMed Central
Štambaský, J., Hocek, M., and Kočovský, P. (2009). C-Nucleosides: synthetic strategies and biological applications. Chem. Rev. 109: 6729–6764, https://doi.org/10.1021/cr9002165.Suche in Google Scholar PubMed
Szathmáry, E. (2003). Why are there four letters in the genetic alphabet? Nat. Rev. Genet. 4: 995–1001, https://doi.org/10.1038/nrg1231.Suche in Google Scholar PubMed
Takahashi, K., Cho, K., Iwai, A., Ito, T., and Iwasawa, N. (2019). Development of N-Phosphinomethyl-Substituted NHC-Nickel(0) complexes as robust catalysts for acrylate salt synthesis from ethylene and CO2. Chem. Eur. J. 25: 13504–13508, https://doi.org/10.1002/chem.201903625.Suche in Google Scholar PubMed
Temburnikar, K. and Seley-Radtke, K.L. (2018). Recent advances in synthetic approaches for medicinal chemistry of C-nucleosides. Beilstein J. Org. Chem. 14: 772–785, https://doi.org/10.3762/bjoc.14.65.Suche in Google Scholar PubMed PubMed Central
Terauchi, M., Abe, H., Matsuda, A., and Shuto, S. (2004). An efficient synthesis of β-C-glycosides based on the conformational restriction strategy: Lewis acid promoted silane reduction of the anomeric position with complete stereoselectivity. Org. Lett. 6: 3751–3754, https://doi.org/10.1021/ol048525+.10.1021/ol048525+Suche in Google Scholar PubMed
Vieira, T., Stevens, A.C., Chtchemelinine, A., Gao, D., Badalov, P., and Heumann, L. (2020). Development of a large-scale cyanation process using continuous flow chemistry en route to the synthesis of Remdesivir. Org. Process Res. Dev. 24: 2113–2121, https://doi.org/10.1021/acs.oprd.0c00172.Suche in Google Scholar PubMed
Vorbrueggen, H. (1995). Adventures in silicon-organic chemistry. Acc. Chem. Res. 28: 509–520, https://doi.org/10.1021/ar00060a007.Suche in Google Scholar
Wan, L.-Q., Zhang, X., Zou, Y., Shi, R., Cao, J.-G., Xu, S.-Y., Deng, L.-F., Zhou, L., Gong, Y., Shu, X., et al.. (2021). Nonenzymatic stereoselective S-glycosylation of polypeptides and proteins. J. Am. Chem. Soc. 143: 11919–11926, https://doi.org/10.1021/jacs.1c05156.Suche in Google Scholar PubMed
Wang, Q., Sun, Q., Jiang, Y., Zhang, H., Yu, L., Tian, C., Chen, G., and Koh, M.J. (2022). Iron-catalysed reductive cross-coupling of glycosyl radicals for the stereoselective synthesis of C-glycosides. Nat. Synth. 1: 235–244, https://doi.org/10.1038/s44160-022-00024-5.Suche in Google Scholar
Warren, T.K., Jordan, R., Lo, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H.C., et al.. (2016). Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531: 381–385, https://doi.org/10.1038/nature17180.Suche in Google Scholar PubMed PubMed Central
Wei, Y., Ben-Zvi, B., and Diao, T. (2021). Diastereoselective synthesis of aryl C-glycosides from glycosyl esters via C−O bond homolysis. Angew. Chem., Int. Ed. 60: 9433–9438, https://doi.org/10.1002/anie.202014991.Suche in Google Scholar PubMed PubMed Central
Wu, Y.X. and Kwon, Y.J. (2016). Aptamers: the “evolution” of SELEX. Methods 106: 21–28, https://doi.org/10.1016/j.ymeth.2016.04.020.Suche in Google Scholar PubMed
Wuebben, C., Blume, S., Abdullin, D., Brajtenbach, D., Haege, F., Kath-Schorr, S., and Schiemann, O. (2019). Site-Directed spin labeling of RNA with a gem-diethylisoindoline spin label: PELDOR, relaxation, and reduction stability. Molecules 24: 4482, https://doi.org/10.3390/molecules24244482.Suche in Google Scholar PubMed PubMed Central
Xia, L., Fan, W., Yuan, X.-A., and Yu, S. (2021). Photoredox-catalyzed stereoselective synthesis of C-nucleoside analogues from glycosyl bromides and heteroarenes. ACS Catal. 11: 9397–9406, https://doi.org/10.1021/acscatal.1c02088.Suche in Google Scholar
Xia, Y. and Studer, A. (2019). Diversity-oriented desulfonylative functionalization of alkyl allyl sulfones. Angew. Chem., Int. Ed. 58: 9836–9840, https://doi.org/10.1002/ange.201903668.Suche in Google Scholar
Yamashige, R., Kimoto, M., Takezawa, Y., Sato, A., Mitsui, T., Yokoyama, S., and Hirao, I. (2012). Highly specific unnatural base pair systems as a third base pair for PCR amplification. Nucleic Acids Res. 40: 2793–2806, https://doi.org/10.1093/nar/gkr1068.Suche in Google Scholar PubMed PubMed Central
Yang, Y. and Yu, B. (2017). Recent advances in the chemical synthesis of C-glycosides. Chem. Rev. 117: 12281–12356, https://doi.org/10.1021/acs.chemrev.7b00234.Suche in Google Scholar PubMed
Yang, Z., Hutter, D., Sheng, P., Sismour, A.M., and Benner, S.A. (2006). Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Res. 34: 6095–6101, https://doi.org/10.1093/nar/gkl633.Suche in Google Scholar PubMed PubMed Central
Yi, D., Zhu, F., and Walczak, M.A. (2018a). Glycosyl cross-coupling with diaryliodonium salts: access to aryl C-glycosides of biomedical relevance. Org. Lett. 20: 1936–1940, https://doi.org/10.1021/acs.orglett.8b00475.Suche in Google Scholar PubMed
Yi, D., Zhu, F., and Walczak, M.A. (2018b). Stereoretentive intramolecular glycosyl cross-coupling: development, scope, and kinetic isotope effect study. Org. Lett. 20: 4627–4631, https://doi.org/10.1021/acs.orglett.8b01927.Suche in Google Scholar PubMed PubMed Central
Young, A.P., Jackson, D.J., and Wyeth, R.C. (2020). A technical review and guide to RNA fluorescence in situ hybridization. PeerJ 8: e8806, https://doi.org/10.7717/peerj.8806.Suche in Google Scholar PubMed PubMed Central
Zhang, C., Xu, S.-Y., Zuo, H., Zhang, X., Dang, Q.-D., and Niu, D. (2023). Direct synthesis of unprotected aryl C-glycosides by photoredox Ni-catalysed cross-coupling. Nat. Synth 2: 251–260, https://doi.org/10.1038/s44160-022-00214-1.Suche in Google Scholar
Zhang, C., Zuo, H., Lee, G.Y., Zou, Y., Dang, Q.-D., Houk, K.N., and Niu, D. (2022). Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat. Chem. 14: 686–694, https://doi.org/10.1038/s41557-022-00918-z.Suche in Google Scholar PubMed
Zhang, X. and Macmillan, D.W.C. (2016). Alcohols as latent coupling fragments for metallaphotoredox catalysis: sp3–sp2 cross-coupling of oxalates with aryl halides. J. Am. Chem. Soc. 138: 13862–13865, https://doi.org/10.1021/jacs.6b09533.Suche in Google Scholar PubMed PubMed Central
Zhang, Y., Ptacin, J.L., Fischer, E.C., Aerni, H.R., Caffaro, C.E., San Jose, K., Feldman, A.W., Turner, C.R., and Romesberg, F.E. (2017). A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551: 644–647, https://doi.org/10.1038/nature24659.Suche in Google Scholar PubMed PubMed Central
Zhou, H., Li, Y., Gan, Y., and Wang, R. (2022). Total RNA synthesis and its covalent labeling innovation. Top. Curr. Chem. 380: 16, https://doi.org/10.1007/s41061-022-00371-z.Suche in Google Scholar PubMed
Zhu, F., Rourke, M.J., Yang, T., Rodriguez, J., and Walczak, M.A. (2016). Highly stereospecific cross-coupling reactions of anomeric stannanes for the synthesis of C-aryl glycosides. J. Am. Chem. Soc. 138: 12049–12052, https://doi.org/10.1021/jacs.6b07891.Suche in Google Scholar PubMed
Zhu, F., Yang, T., and Walczak, M.A. (2017). Glycosyl Stille cross-coupling with anomeric nucleophiles – a general solution to a long-standing problem of stereocontrolled synthesis of C-glycosides. Synlett 28: 1510–1516, https://doi.org/10.1055/s-0036-1589020.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlights in biochemistry Bochum 2022
- Highlights in biochemistry Bochum 2022
- Two are not enough: synthetic strategies and applications of unnatural base pairs
- The emerging role of ATP as a cosolute for biomolecular processes
- Intracellular spatially-targeted chemical chaperones increase native state stability of mutant SOD1 barrel
- Nanoscale organization of CaV2.1 splice isoforms at presynaptic terminals: implications for synaptic vesicle release and synaptic facilitation
- Rodent models for mood disorders – understanding molecular changes by investigating social behavior
- Why do certain cancer cells alter functionality and fuse?
- Research Articles/Short Communications
- Cell Biology and Signaling
- MicroRNA-101-3p inhibits nasopharyngeal carcinoma cell proliferation and cisplatin resistance through ZIC5 down-regulation by targeting SOX2
Artikel in diesem Heft
- Frontmatter
- Highlights in biochemistry Bochum 2022
- Highlights in biochemistry Bochum 2022
- Two are not enough: synthetic strategies and applications of unnatural base pairs
- The emerging role of ATP as a cosolute for biomolecular processes
- Intracellular spatially-targeted chemical chaperones increase native state stability of mutant SOD1 barrel
- Nanoscale organization of CaV2.1 splice isoforms at presynaptic terminals: implications for synaptic vesicle release and synaptic facilitation
- Rodent models for mood disorders – understanding molecular changes by investigating social behavior
- Why do certain cancer cells alter functionality and fuse?
- Research Articles/Short Communications
- Cell Biology and Signaling
- MicroRNA-101-3p inhibits nasopharyngeal carcinoma cell proliferation and cisplatin resistance through ZIC5 down-regulation by targeting SOX2