Home Life Sciences Rodent models for mood disorders – understanding molecular changes by investigating social behavior
Article
Licensed
Unlicensed Requires Authentication

Rodent models for mood disorders – understanding molecular changes by investigating social behavior

  • Patrick R. Reinhardt ORCID logo , Candy D. C. Theis , Georg Juckel and Nadja Freund ORCID logo EMAIL logo
Published/Copyright: August 28, 2023

Abstract

Mood disorders, including depressive and bipolar disorders, are the group of psychiatric disorders with the highest prevalence and disease burden. However, their pathophysiology remains poorly understood. Animal models are an extremely useful tool for the investigation of molecular mechanisms underlying these disorders. For psychiatric symptom assessment in animals, a meaningful behavioral phenotype is needed. Social behaviors constitute naturally occurring complex behaviors in rodents and can therefore serve as such a phenotype, contributing to insights into disorder related molecular changes. In this narrative review, we give a fundamental overview of social behaviors in laboratory rodents, as well as their underlying neuronal mechanisms and their assessment. Relevant behavioral and molecular changes in models for mood disorders are presented and an outlook on promising future directions is given.


Corresponding author: Nadja Freund, Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft (DFG)

Award Identifier / Grant number: 492434978

  1. Research ethics: Not applicable.

  2. Author contributions: All authors contributed equally and accepted responsibility for the entire content of this manuscript and approved its submission

  3. Conflict of interest statement: The authors state no conflict of interest.

  4. Research funding: This work was supported by a grant from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG): GRK2862/1, project no:492434978.

  5. Data availability: Not applicable.

References

Abraham, M., Schmerder, K., Hedtstück, M., Bösing, K., Mundorf, A., and Freund, N. (2023). Maternal separation and its developmental consequences on anxiety and parvalbumin interneurons in the amygdala. J. Neural Transm. 1–9, https://doi.org/10.1007/s00702-023-02657-y.Search in Google Scholar PubMed PubMed Central

Agmo, A. (1997). Male rat sexual behavior. Brain Res. Brain Res. Protoc. 1: 203–209, https://doi.org/10.1016/s1385-299x(96)00036-0.Search in Google Scholar PubMed

Aisa, B., Tordera, R., Lasheras, B., Del Río, J., and Ramírez, M.J. (2007). Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology 32: 256–266, https://doi.org/10.1016/j.psyneuen.2006.12.013.Search in Google Scholar PubMed

Aleyasin, H., Flanigan, M.E., and Russo, S.J. (2018). Neurocircuitry of aggression and aggression seeking behavior: nose poking into brain circuitry controlling aggression. Curr. Opin. Neurobiol. 49: 184–191, https://doi.org/10.1016/j.conb.2018.02.013.Search in Google Scholar PubMed PubMed Central

Angoa-Pérez, M. and Kuhn, D.M. (2015). Neuroanatomical dichotomy of sexual behaviors in rodents: a special emphasis on brain serotonin. Behav. Pharmacol. 26: 595–606, https://doi.org/10.1097/fbp.0000000000000157.Search in Google Scholar PubMed PubMed Central

Aubry, A.V., Joseph Burnett, C., Goodwin, N.L., Li, L., Navarrete, J., Zhang, Y., Tsai, V., Durand-de Cuttoli, R., Golden, S.A., and Russo, S.J. (2022). Sex differences in appetitive and reactive aggression. Neuropsychopharmacology 47: 1746–1754.10.1038/s41386-022-01375-5Search in Google Scholar PubMed PubMed Central

Barr, A.M., Fiorino, D.F., and Phillips, A.G. (1999). Effects of withdrawal from an escalating dose schedule of d-amphetamine on sexual behavior in the male rat. Pharmacol. Biochem. Behav. 64: 597–604, https://doi.org/10.1016/s0091-3057(99)00156-2.Search in Google Scholar PubMed

Berg, E.L., Copping, N.A., Rivera, J.K., Pride, M.C., Careaga, M., Bauman, M.D., Berman, R.F., Lein, P.J., Harony-Nicolas, H., Buxbaum, J.D., et al.. (2018). Developmental social communication deficits in the Shank3 rat model of phelan-mcdermid syndrome and autism spectrum disorder: social communication in the Shank3 rat. Autism Res. 11: 587–601, https://doi.org/10.1002/aur.1925.Search in Google Scholar PubMed PubMed Central

Beyer, D.K.E. and Freund, N. (2017). Animal models for bipolar disorder: from bedside to the cage. Int. J. Bipolar Disord. 5: 35, https://doi.org/10.1186/s40345-017-0104-6.Search in Google Scholar PubMed PubMed Central

Bialy, M., Bogacki-Rychlik, W., Przybylski, J., and Zera, T. (2019). The sexual motivation of male rats as a tool in animal models of human health disorders. Front. Behav. Neurosci. 13: 257, https://doi.org/10.3389/fnbeh.2019.00257.Search in Google Scholar PubMed PubMed Central

Bicks, L.K., Yamamuro, K., Flanigan, M.E., Kim, J.M., Kato, D., Lucas, E.K., Koike, H., Peng, M.S., Brady, D.M., Chandrasekaran, S., et al.. (2020). Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior. Nat. Commun. 11: 1003, https://doi.org/10.1038/s41467-020-14740-z.Search in Google Scholar PubMed PubMed Central

Bölükbas, I., Mundorf, A., and Freund, N. (2020). Maternal separation in rats induces neurobiological and behavioral changes on the maternal side. Sci. Rep. 10: 22431, https://doi.org/10.1038/s41598-020-80087-6.Search in Google Scholar PubMed PubMed Central

Brudzynski, S. (2015). Pharmacology of ultrasonic vocalizations in adult rats: significance, call classification and neural substrate. Curr. Neuropharmacol. 13: 180–192, https://doi.org/10.2174/1570159x13999150210141444.Search in Google Scholar PubMed PubMed Central

Brudzynski, S.M. (2021). Biological functions of rat ultrasonic vocalizations, arousal mechanisms, and call initiation. Brain Sci. 11: 605, https://doi.org/10.3390/brainsci11050605.Search in Google Scholar PubMed PubMed Central

Bundesinstitut für Risikobewertung (2022). Deutsches Zentrum zum Schutz von Versuchstieren website, Available at: https://www.bf3r.de/de/verwendung_von_versuchstieren_im_jahr_2021-309160.htm (Accessed 15 April 2023).Search in Google Scholar

Burgdorf, J., Wood, P.L., Kroes, R.A., Moskal, J.R., and Panksepp, J. (2007). Neurobiology of 50-kHz ultrasonic vocalizations in rats: electrode mapping, lesion, and pharmacology studies. Behav. Brain Res. 182: 274–283, https://doi.org/10.1016/j.bbr.2007.03.010.Search in Google Scholar PubMed

Cádiz-Moretti, B., Otero-García, M., Martínez-García, F., and Lanuza, E. (2016). Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse. Brain Struct. Funct. 221: 1033–1065, https://doi.org/10.1007/s00429-014-0954-y.Search in Google Scholar PubMed

Canseco-Alba, A. and Rodríguez-Manzo, G. (2019). Endocannabinoids interact with the dopaminergic system to increase sexual motivation: lessons from the sexual satiety phenomenon. Front. Behav. Neurosci. 13: 184, https://doi.org/10.3389/fnbeh.2019.00184.Search in Google Scholar PubMed PubMed Central

Canteras, N.S., Simerly, R.B., and Swanson, L.W. (1995). Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J. Comp. Neurol. 360: 213–245, https://doi.org/10.1002/cne.903600203.Search in Google Scholar PubMed

Capone, F., Bonsignore, L.T., and Cirulli, F. (2005). Methods in the analysis of maternal behavior in the rodent. Curr. Protoc. Toxicol. 26: 13.9.1–13.9.16, https://doi.org/10.1002/0471140856.tx1309s26.Search in Google Scholar PubMed

Chan, J.S.W., Snoeren, E.M.S., Cuppen, E., Waldinger, M.D., Olivier, B., and Oosting, R.S. (2011). The serotonin transporter plays an important role in male sexual behavior: a study in serotonin transporter knockout rats. J. Sex. Med. 8: 97–108, https://doi.org/10.1111/j.1743-6109.2010.01961.x.Search in Google Scholar PubMed

Chen, P. and Hong, W. (2018). Neural circuit mechanisms of social behavior. Neuron 98: 16–30, https://doi.org/10.1016/j.neuron.2018.02.026.Search in Google Scholar PubMed PubMed Central

Chourbaji, S., Zacher, C., Sanchis-Segura, C., Dormann, C., Vollmayr, B., and Gass, P. (2005). Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res. Protoc. 16: 70–78, https://doi.org/10.1016/j.brainresprot.2005.09.002.Search in Google Scholar PubMed

Ciccocioppo, R. (2017). Grand challenge in psychopharmacology: setting priorities to shape a bright future. Front. Psychiatr. 8: 1–15, https://doi.org/10.3389/fpsyt.2017.00015.Search in Google Scholar PubMed PubMed Central

Contestabile, A., Casarotto, G., Girard, B., Tzanoulinou, S., and Bellone, C. (2021). Deconstructing the contribution of sensory cues in social approach. Eur. J. Neurosci. 53: 3199–3211, https://doi.org/10.1111/ejn.15179.Search in Google Scholar PubMed PubMed Central

Correll, C.U., Solmi, M., Cortese, S., Fava, M., Højlund, M., Kraemer, H.C., McIntyre, R.S., Pine, D.S., Schneider, L.S., and Kane, J.M. (2023). The future of psychopharmacology: a critical appraisal of ongoing phase 2/3 trials, and of some current trends aiming to de‐risk trial programmes of novel agents. World Psychiatr. 22: 48–74, https://doi.org/10.1002/wps.21056.Search in Google Scholar PubMed PubMed Central

Dai, B., Sun, F., Tong, X., Ding, Y., Kuang, A., Osakada, T., Li, Y., and Lin, D. (2022). Responses and functions of dopamine in nucleus accumbens core during social behaviors. Cell Rep. 40: 111246, https://doi.org/10.1016/j.celrep.2022.111246.Search in Google Scholar PubMed PubMed Central

Daniels, W.M.U., Pietersen, C.Y., Carstens, M.E., and Stein, D.J. (2004). Maternal separation in rats leads to anxiety-like behavior and a blunted ACTH response and altered neurotransmitter levels in response to a subsequent stressor. Metab. Brain Dis. 19: 3–14, https://doi.org/10.1023/b:mebr.0000027412.19664.b3.10.1023/B:MEBR.0000027412.19664.b3Search in Google Scholar

Derntl, B., Seidel, E.-M., Eickhoff, S.B., Kellermann, T., Gur, R.C., Schneider, F., and Habel, U. (2011). Neural correlates of social approach and withdrawal in patients with major depression. Soc. Neurosci. 6: 482–501, https://doi.org/10.1080/17470919.2011.579800.Search in Google Scholar PubMed PubMed Central

Desjardins, C., Maruniak, J.A., and Bronson, F.H. (1973). Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182: 939–941, https://doi.org/10.1126/science.182.4115.939.Search in Google Scholar PubMed

DiMatteo, M.R. (2004). Social support and patient adherence to medical treatment: a meta-analysis. Health Psychol 23: 207–218, https://doi.org/10.1037/0278-6133.23.2.207.Search in Google Scholar PubMed

Du Preez, A., Eum, J., Eiben, I., Eiben, P., Zunszain, P.A., Pariante, C.M., Thuret, S., and Fernandes, C. (2021). Do different types of stress differentially alter behavioural and neurobiological outcomes associated with depression in rodent models? A systematic review. Front. Neuroendocrinol. 61: 100896, https://doi.org/10.1016/j.yfrne.2020.100896.Search in Google Scholar PubMed

Dvorak, R.D., Wray, T.B., Kuvaas, N.J., and Kilwein, T.M. (2013). Mania and sexual risk: associations with behavioral self-regulation. J. Affect. Disord. 150: 1076–1081, https://doi.org/10.1016/j.jad.2013.04.023.Search in Google Scholar PubMed

Elias, L.J., Succi, I.K., Schaffler, M.D., Foster, W., Gradwell, M.A., Bohic, M., Fushiki, A., Upadhyay, A., Ejoh, L.L., Schwark, R., et al.. (2023). Touch neurons underlying dopaminergic pleasurable touch and sexual receptivity. Cell 186: 577–590.e16, https://doi.org/10.1016/j.cell.2022.12.034.Search in Google Scholar PubMed PubMed Central

Ellis, S.N. and Honeycutt, J.A. (2021). Sex differences in affective dysfunction and alterations in parvalbumin in rodent models of early life adversity. Front. Behav. Neurosci. 15: 741454, https://doi.org/10.3389/fnbeh.2021.741454.Search in Google Scholar PubMed PubMed Central

Endo, N., Makinodan, M., Mannari-Sasagawa, T., Horii-Hayashi, N., Somayama, N., Komori, T., Kishimoto, T., and Nishi, M. (2021). The effects of maternal separation on behaviours under social-housing environments in adult male C57BL/6 mice. Sci. Rep. 11: 527, https://doi.org/10.1038/s41598-020-80206-3.Search in Google Scholar PubMed PubMed Central

Engelhardt, K.-A., Fuchs, E., Schwarting, R.K.W., and Wöhr, M. (2017). Effects of amphetamine on pro-social ultrasonic communication in juvenile rats: implications for mania models. Eur. Neuropsychopharmacol. 27: 261–273, https://doi.org/10.1016/j.euroneuro.2017.01.003.Search in Google Scholar PubMed

Fan, Z., Chang, J., Liang, Y., Zhu, H., Zhang, C., Zheng, D., Wang, J., Xu, Y., Li, Q.-J., and Hu, H. (2023). Neural mechanism underlying depressive-like state associated with social status loss. Cell 186: 560–576.e17, https://doi.org/10.1016/j.cell.2022.12.033.Search in Google Scholar PubMed

Farrell, W.J. and Alberts, J.R. (2002). Stimulus control of maternal responsiveness to Norway rat (Rattus norvegicus) pup ultrasonic vocalizations. J. Comp. Psychol. 116: 297–307, https://doi.org/10.1037/0735-7036.116.3.297.Search in Google Scholar PubMed

Felix-Ortiz, A.C. and Tye, K.M. (2014). Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J. Neurosci. 34: 586–595, https://doi.org/10.1523/jneurosci.4257-13.2014.Search in Google Scholar

File, S.E. and Hyde, J.R.G. (1978). Can social interaction be used to measure anxiety? Br. J. Pharmacol. 62: 19–24, https://doi.org/10.1111/j.1476-5381.1978.tb07001.x.Search in Google Scholar PubMed PubMed Central

Francis, D., Diorio, J., Liu, D., and Meaney, M.J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286: 1155–1158, https://doi.org/10.1126/science.286.5442.1155.Search in Google Scholar PubMed

Freund, N., Thompson, B.S., Sonntag, K., Meda, S., and Andersen, S.L. (2016). When the party is over: depressive-like states in rats following termination of cortical D1 receptor overexpression. Psychopharmacol. 233: 1191–1201, https://doi.org/10.1007/s00213-015-4200-y.Search in Google Scholar PubMed PubMed Central

Fulenwider, H.D., Caruso, M.A., and Ryabinin, A.E. (2022). Manifestations of domination: assessments of social dominance in rodents. Genes Brain Behav. 21: 1–15, https://doi.org/10.1111/gbb.12731.Search in Google Scholar PubMed PubMed Central

García-Gutiérrez, M.S., Navarrete, F., Sala, F., Gasparyan, A., Austrich-Olivares, A., and Manzanares, J. (2020). Biomarkers in psychiatry: concept, definition, types and relevance to the clinical reality. Front. Psychiatr. 11: 432, https://doi.org/10.3389/fpsyt.2020.00432.Search in Google Scholar PubMed PubMed Central

Girard, J.M., Cohn, J.F., Mahoor, M.H., Mavadati, S.M., Hammal, Z., and Rosenwald, D.P. (2014). Nonverbal social withdrawal in depression: evidence from manual and automatic analyses. Image Vis. Comput. 32: 641–647, https://doi.org/10.1016/j.imavis.2013.12.007.Search in Google Scholar PubMed PubMed Central

Gronli, J., Murison, R., Fiske, E., Bjorvatn, B., Sorensen, E., Portas, C., and Ursin, R. (2005). Effects of chronic mild stress on sexual behavior, locomotor activity and consumption of sucrose and saccharine solutions. Physiol. Behav. 84: 571–577, https://doi.org/10.1016/j.physbeh.2005.02.007.Search in Google Scholar PubMed

Harandi, T.F., Mohammad Taghinasab, M., and Dehghan Nayeri, T. (2017). The correlation of social support with mental health: a meta-analysis. Electron. Physician 9: 5212–5222, https://doi.org/10.19082/5212.Search in Google Scholar PubMed PubMed Central

Heijkoop, R., Huijgens, P.T., and Snoeren, E.M.S. (2018). Assessment of sexual behavior in rats: the potentials and pitfalls. Behav. Brain Res. 352: 70–80, https://doi.org/10.1016/j.bbr.2017.10.029.Search in Google Scholar PubMed

Higgins, A. (2010). Antidepressant-associated sexual dysfunction: impact, effects, and treatment. Drug Healthc. Patient Saf. 2: 141–150, https://doi.org/10.2147/DHPS.S7634.Search in Google Scholar PubMed PubMed Central

Hitti, F.L. and Siegelbaum, S.A. (2014). The hippocampal CA2 region is essential for social memory. Nature 508: 88–92, https://doi.org/10.1038/nature13028.Search in Google Scholar PubMed PubMed Central

Hong, W., Kennedy, A., Burgos-Artizzu, X.P., Zelikowsky, M., Navonne, S.G., Perona, P., and Anderson, D.J. (2015). Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc. Natl. Acad. Sci. U. S. A. 112: E5351–E5360, https://doi.org/10.1073/pnas.1515982112.Search in Google Scholar PubMed PubMed Central

Insel, T.R. (2007). From animal models to model animals. Biol. Psychiatr. 62: 1337–1339, https://doi.org/10.1016/j.biopsych.2007.10.001.Search in Google Scholar PubMed

Insel, T.R. and Fernald, R.D. (2004). How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27: 697–722, https://doi.org/10.1146/annurev.neuro.27.070203.144148.Search in Google Scholar PubMed

Jabarin, R., Netser, S., and Wagner, S. (2022). Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol. Autism. 13: 41, https://doi.org/10.1186/s13229-022-00521-6.Search in Google Scholar PubMed PubMed Central

Janak, P.H. and Tye, K.M. (2015). From circuits to behaviour in the amygdala. Nature 517: 284–292, https://doi.org/10.1038/nature14188.Search in Google Scholar PubMed PubMed Central

Johnson, S.L., Winett, C.A., Meyer, B., Greenhouse, W.J., and Miller, I. (1999). Social support and the course of bipolar disorder. J. Abnorm. Psychol. 108: 558–566, https://doi.org/10.1037/0021-843x.108.4.558.Search in Google Scholar

Juckel, G., Manitz, M.-P., Freund, N., and Gatermann, S. (2021). Impact of poly I:C induced maternal immune activation on offspring’s gut microbiome diversity – implications for schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 110: 110306, https://doi.org/10.1016/j.pnpbp.2021.110306.Search in Google Scholar PubMed

Kaidanovich-Beilin, O., Lipina, T., Vukobradovic, I., Roder, J., and Woodgett, J.R. (2011). Assessment of social interaction behaviors. J. Vis. Exp. 48: 1–6, https://doi.org/10.3791/2473.Search in Google Scholar PubMed PubMed Central

Katahira, T., Miyazaki, N., and Motoyama, J. (2018). Immediate effects of maternal separation on the development of interneurons derived from medial ganglionic eminence in the neonatal mouse hippocampus. Dev. Growth Differ. 60: 278–290, https://doi.org/10.1111/dgd.12540.Search in Google Scholar PubMed

Keshavarzi, S., Power, J.M., Albers, E.H.H., Sullivan, R.K.S., and Sah, P. (2015). Dendritic organization of olfactory inputs to medial amygdala neurons. J. Neurosci. 35: 13020–13028, https://doi.org/10.1523/jneurosci.0627-15.2015.Search in Google Scholar

Kietzman, H.W., Trinoskey-Rice, G., Blumenthal, S.A., Guo, J.D., and Gourley, S.L. (2022). Social incentivization of instrumental choice in mice requires amygdala-prelimbic cortex-nucleus accumbens connectivity. Nat. Commun. 13: 4768, https://doi.org/10.1038/s41467-022-32388-9.Search in Google Scholar PubMed PubMed Central

Kingsbury, L., Huang, S., Wang, J., Gu, K., Golshani, P., Wu, Y.E., and Hong, W. (2019). Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell 178: 429–446.e16, https://doi.org/10.1016/j.cell.2019.05.022.Search in Google Scholar PubMed PubMed Central

Knapp, P. and Hewison, J. (1998). The protective effects of social support against mood disorder after stroke. Psychol. Health Med. 3: 275–283, https://doi.org/10.1080/13548509808400602.Search in Google Scholar

Kroes, R.A., Burgdorf, J., Otto, N.J., Panksepp, J., and Moskal, J.R. (2007). Social defeat, a paradigm of depression in rats that elicits 22-kHz vocalizations, preferentially activates the cholinergic signaling pathway in the periaqueductal gray. Behav. Brain Res. 182: 290–300, https://doi.org/10.1016/j.bbr.2007.03.022.Search in Google Scholar PubMed PubMed Central

Kruk, M.R. (1991). Ethology and pharmacology of hypothalamic aggression in the rat. Neurosci. Biobehav. Rev. 15: 527–538, https://doi.org/10.1016/s0149-7634(05)80144-7.Search in Google Scholar PubMed

Kudryavtseva, N.N. (2000). Agonistic behavior: a model, experimental studies, and perspectives. Neurosci. Behav. Physiol. 30: 293–305, https://doi.org/10.1007/bf02471782.Search in Google Scholar

Kulak, A., Cuenod, M., and Do, K.Q. (2012). Behavioral phenotyping of glutathione-deficient mice: relevance to schizophrenia and bipolar disorder. Behav. Brain Res. 226: 563–570, https://doi.org/10.1016/j.bbr.2011.10.020.Search in Google Scholar PubMed

Laine, M.A., Mitchell, J.R., Rhyner, J., Clark, R., Kannan, A., Keith, J., Pikus, M., Bergeron, E., Ravaglia, I., Ulgenturk, E., et al. (2022). Sounding the alarm: sex differences in rat ultrasonic vocalizations during pavlovian fear conditioning and extinction. eNeuro 9: 1–15, https://doi.org/10.1523/ENEURO.0382-22.2022.Search in Google Scholar PubMed PubMed Central

Larsson, K. (1971). Impaired mating performances in male rats after anosmia induced peripherally or centrally. Brain. Behav. Evol. 4: 463–471, https://doi.org/10.1159/000125452.Search in Google Scholar PubMed

Lee, E., Rhim, I., Lee, J.W., Ghim, J.-W., Lee, S., Kim, E., and Jung, M.W. (2016). Enhanced neuronal activity in the medial prefrontal cortex during social approach behavior. J. Neurosci. 36: 6926–6936, https://doi.org/10.1523/jneurosci.0307-16.2016.Search in Google Scholar

Lee, J.-H., Kim, H.J., Kim, J.G., Ryu, V., Kim, B.-T., Kang, D.-W., and Jahng, J.W. (2007). Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci. Res. 58: 32–39, https://doi.org/10.1016/j.neures.2007.01.008.Search in Google Scholar PubMed

Lee, W., Dowd, H.N., Nikain, C., Dwortz, M.F., Yang, E.D., and Curley, J.P. (2021). Effect of relative social rank within a social hierarchy on neural activation in response to familiar or unfamiliar social signals. Sci. Rep. 11: 2864, https://doi.org/10.1038/s41598-021-82255-8.Search in Google Scholar PubMed PubMed Central

Lin, D., Boyle, M.P., Dollar, P., Lee, H., Lein, E.S., Perona, P., and Anderson, D.J. (2011). Functional identification of an aggression locus in the mouse hypothalamus. Nature 470: 221–226, https://doi.org/10.1038/nature09736.Search in Google Scholar PubMed PubMed Central

Lippmann, M., Bress, A., Nemeroff, C.B., Plotsky, P.M., and Monteggia, L.M. (2007). Long-term behavioural and molecular alterations associated with maternal separation in rats: molecular adaptations after maternal separation. Eur. J. Neurosci. 25: 3091–3098, https://doi.org/10.1111/j.1460-9568.2007.05522.x.Search in Google Scholar PubMed

Liu, Z.-W., Yu, Y., Lu, C., Jiang, N., Wang, X.-P., Xiao, S.-Y., and Liu, X.-M. (2019). Postweaning isolation rearing alters the adult social, sexual preference and mating behaviors of male CD-1 mice. Front. Behav. Neurosci. 13: 21, https://doi.org/10.3389/fnbeh.2019.00021.Search in Google Scholar PubMed PubMed Central

Lonstein, J.S., Linning-Duffy, K., and Yan, L. (2019). Low daytime light intensity disrupts male copulatory behavior, and upregulates medial preoptic area steroid hormone and dopamine receptor expression, in a diurnal rodent model of seasonal affective disorder. Front. Behav. Neurosci. 13: 72, https://doi.org/10.3389/fnbeh.2019.00072.Search in Google Scholar PubMed PubMed Central

Lukkes, J.L., Meda, S., Thompson, B.S., Freund, N., and Andersen, S.L. (2017). Early life stress and later peer distress on depressive behavior in adolescent female rats: effects of a novel intervention on GABA and D2 receptors. Behav. Brain Res. 330: 37–45, https://doi.org/10.1016/j.bbr.2017.04.053.Search in Google Scholar PubMed PubMed Central

Lukkes, J.L., Watt, M.J., Lowry, C.A., and Forster, G.L. (2009). Consequences of post-weaning social isolation on anxiety behavior and related neural circuits in rodents. Front. Behav. Neurosci. 3: 18, https://doi.org/10.3389/neuro.08.018.2009.Search in Google Scholar PubMed PubMed Central

Madiha, S. and Haider, S. (2019). Curcumin restores rotenone induced depressive-like symptoms in animal model of neurotoxicity: assessment by social interaction test and sucrose preference test. Metab. Brain Dis. 34: 297–308, https://doi.org/10.1007/s11011-018-0352-x.Search in Google Scholar PubMed

Makinodan, M., Rosen, K.M., Ito, S., and Corfas, G. (2012). A critical period for social experience–dependent oligodendrocyte maturation and myelination. Science 337: 1357–1360, https://doi.org/10.1126/science.1220845.Search in Google Scholar PubMed PubMed Central

Malatynska, E. and Knapp, R.J. (2005). Dominant-submissive behavior as models of mania and depression. Neurosci. Biobehav. Rev. 29: 715–737, https://doi.org/10.1016/j.neubiorev.2005.03.014.Search in Google Scholar PubMed

Mällo, T., Matrov, D., Kõiv, K., and Harro, J. (2009). Effect of chronic stress on behavior and cerebral oxidative metabolism in rats with high or low positive affect. Neuroscience 164: 963–974, https://doi.org/10.1016/j.neuroscience.2009.08.041.Search in Google Scholar PubMed

Markowski, V.P., Eaton, R.C., Lumley, L.A., Moses, J., and Hull, E.M. (1994). A D1 agonist in the MPOA facilitates copulation in male rats. Pharmacol. Biochem. Behav. 47: 483–486, https://doi.org/10.1016/0091-3057(94)90147-3.Search in Google Scholar PubMed

Meaney, M.J., Mitchell, J.B., Aitken, D.H., Bhatnagar, S., Bodnoff, S.R., Iny, L.J., and Sarrieau, A. (1991). The effects of neonatal handling on the development of the adrenocortical response to stress: implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology 16: 85–103, https://doi.org/10.1016/0306-4530(91)90072-2.Search in Google Scholar PubMed

Melis, M.R. and Argiolas, A. (1995). Dopamine and sexual behavior. Neurosci. Biobehav. Rev. 19: 19–38, https://doi.org/10.1016/0149-7634(94)00020-2.Search in Google Scholar PubMed

Melis, M.R., Sanna, F., and Argiolas, A. (2022). Dopamine, erectile function and male sexual behavior from the past to the present: a review. Brain Sci. 12: 826, https://doi.org/10.3390/brainsci12070826.Search in Google Scholar PubMed PubMed Central

Millstein, R.A. and Holmes, A. (2007). Effects of repeated maternal separation on anxiety-and depression-related phenotypes in different mouse strains. Neurosci. Biobehav. Rev. 31: 3–17, https://doi.org/10.1016/j.neubiorev.2006.05.003.Search in Google Scholar PubMed

Monroy, E., Hernández-Torres, E., and Flores, G. (2010). Maternal separation disrupts dendritic morphology of neurons in prefrontal cortex, hippocampus, and nucleus accumbens in male rat offspring. J. Chem. Neuroanat. 40: 93–101, https://doi.org/10.1016/j.jchemneu.2010.05.005.Search in Google Scholar PubMed

Mundorf, A., Bölükbas, I., and Freund, N. (2022). Maternal separation: does it hold the potential to model consequences of postpartum depression? Dev. Psychobiol. 64: 1–26, https://doi.org/10.1002/dev.22219.Search in Google Scholar PubMed

Mundorf, A., Matsui, H., Ocklenburg, S., and Freund, N. (2020). Asymmetry of turning behavior in rats is modulated by early life stress. Behav. Brain Res. 393: 112807, https://doi.org/10.1016/j.bbr.2020.112807.Search in Google Scholar PubMed

Mundorf, A. and Ocklenburg, S. (2023). Hemispheric asymmetries in mental disorders: evidence from rodent studies. J. Neural Transm., https://doi.org/10.1007/s00702-023-02610-z.Search in Google Scholar PubMed PubMed Central

Nakamoto, C., Kawamura, M., Nakatsukasa, E., Natsume, R., Takao, K., Watanabe, M., Abe, M., Takeuchi, T., and Sakimura, K. (2020). GluD1 knockout mice with a pure C57BL/6N background show impaired fear memory, social interaction, and enhanced depressive-like behavior. PLoS One 15: e0229288, https://doi.org/10.1371/journal.pone.0229288.Search in Google Scholar PubMed PubMed Central

Newman, B.M., Newman, P.R., Griffen, S., O’Connor, K., and Spas, J. (2007). The relationship of social support to depressive symptoms during the transition to high school. Adolescence 42: 441–459.Search in Google Scholar

Niv, Y. (2021). The primacy of behavioral research for understanding the brain. Behav. Neurosci. 135: 601–609, https://doi.org/10.1037/bne0000471.Search in Google Scholar PubMed

Numan, M. and Stolzenberg, D.S. (2009). Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Front. Neuroendocrinol. 30: 46–64, https://doi.org/10.1016/j.yfrne.2008.10.002.Search in Google Scholar PubMed

Olivier, J.D.A., Esquivel-Franco, D.C., Waldinger, M.D., and Olivier, B. (2019). Serotonin and sexual behavior. In: The serotonin system. Academic Press, London, pp. 117–132.10.1016/B978-0-12-813323-1.00007-4Search in Google Scholar

Okuyama, T., Kitamura, T., Roy, D.S., Itohara, S., and Tonegawa, S. (2016). Ventral CA1 neurons store social memory. Science 353: 1536–1541, https://doi.org/10.1126/science.aaf7003.Search in Google Scholar PubMed PubMed Central

O’Mahony, S.M., Hyland, N.P., Dinan, T.G., and Cryan, J.F. (2011). Maternal separation as a model of brain–gut axis dysfunction. Psychopharmacol. 214: 71–88, https://doi.org/10.1007/s00213-010-2010-9.Search in Google Scholar PubMed

Orso, R., Creutzberg, K.C., Wearick-Silva, L.E., Wendt Viola, T., Tractenberg, S.G., Benetti, F., and Grassi-Oliveira, R. (2019). How early life stress impact maternal care: a systematic review of rodent studies. Front. Behav. Neurosci. 13: 197, https://doi.org/10.3389/fnbeh.2019.00197.Search in Google Scholar PubMed PubMed Central

Pereira, M., Andreatini, R., Schwarting, R.K.W., and Brenes, J.C. (2014). Amphetamine-induced appetitive 50-kHz calls in rats: a marker of affect in mania? Psychopharmacol. 231: 2567–2577, https://doi.org/10.1007/s00213-013-3413-1.Search in Google Scholar PubMed

Pfaus, J.G. and Phillips, A.G. (1991). Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat. Behav. Neurosci. 105: 727–743, https://doi.org/10.1037/0735-7044.105.5.727.Search in Google Scholar

Pitchers, K.K., Frohmader, K.S., Vialou, V., Mouzon, E., Nestler, E.J., Lehman, M.N., and Coolen, L.M. (2010). ΔFosB in the nucleus accumbens is critical for reinforcing effects of sexual reward. Genes Brain Behav. 9: 831–840, https://doi.org/10.1111/j.1601-183x.2010.00621.x.Search in Google Scholar PubMed PubMed Central

Qi, H., Luo, L., Lu, C., Chen, R., Zhou, X., Zhang, X., and Jia, Y. (2023). TCF7L2 acts as a molecular switch in midbrain to control mammal vocalization through its DNA binding domain but not transcription activation domain. Mol. Psychiatr. 28: 1703–1717, https://doi.org/10.1038/s41380-023-01993-5.Search in Google Scholar PubMed PubMed Central

Raam, T. and Hong, W. (2021). Organization of neural circuits underlying social behavior: a consideration of the medial amygdala. Curr. Opin. Neurobiol. 68: 124–136, https://doi.org/10.1016/j.conb.2021.02.008.Search in Google Scholar PubMed PubMed Central

Ramsey, L.A., Holloman, F.M., Lee, S.S., and Venniro, M. (2023). An operant social self-administration and choice model in mice. Nat. Protoc. 18: 1669–1686, https://doi.org/10.1038/s41596-023-00813-y.Search in Google Scholar PubMed

Rao, R.M. and Sadananda, M. (2015). Strain-and context-based 50 kHz ultrasonic vocalizations and anxiety behaviour in the Wistar-Kyoto rat. J. Biosci. 40: 561–570, https://doi.org/10.1007/s12038-015-9534-4.Search in Google Scholar PubMed

Riaz, M.S., Bohlen, M.O., Gunter, B.W., Henry, Q., Stockmeier, C.A., and Paul, I.A. (2015). Attenuation of social interaction-associated ultrasonic vocalizations and spatial working memory performance in rats exposed to chronic unpredictable stress. Physiol. Behav. 152: 128–134, https://doi.org/10.1016/j.physbeh.2015.09.005.Search in Google Scholar PubMed PubMed Central

Rudy, B., Fishell, G., Lee, S., and Hjerling-Leffler, J. (2011). Three groups of interneurons account for nearly 100 % of neocortical GABAergic neurons. Dev. Neurobiol. 71: 45–61, https://doi.org/10.1002/dneu.20853.Search in Google Scholar PubMed PubMed Central

Russo, S.J. and Nestler, E.J. (2013). The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14: 609–625, https://doi.org/10.1038/nrn3381.Search in Google Scholar PubMed PubMed Central

Ryabushkina, Y.A., Reshetnikov, V.V., and Bondar, N.P. 2020. Maternal separation early in life alters the expression of genes Npas4 and Nr1d1 in adult female mice: correlation with social behavior. Behav. Neurol. 2020: 1–9, https://doi.org/10.1155/2020/7830469.Search in Google Scholar PubMed PubMed Central

Sanna, F., Bratzu, J., Serra, M.P., Leo, D., Quartu, M., Boi, M., Espinoza, S., Gainetdinov, R.R., Melis, M.R., and Argiolas, A. (2020). Altered sexual behavior in dopamine transporter (DAT) knockout male rats: a behavioral, neurochemical and intracerebral microdialysis study. Front. Behav. Neurosci. 14: 58, https://doi.org/10.3389/fnbeh.2020.00058.Search in Google Scholar PubMed PubMed Central

Sanna, F., Contini, A., Melis, M.R., and Argiolas, A. (2015). Role of dopamine D4 receptors in copulatory behavior: studies with selective D4 agonists and antagonists in male rats. Pharmacol. Biochem. Behav. 137: 110–118, https://doi.org/10.1016/j.pbb.2015.08.012.Search in Google Scholar PubMed

Scardochio, T. and Clarke, P.B.S. (2013). Inhibition of 50-kHz ultrasonic vocalizations by dopamine receptor subtype-selective agonists and antagonists in adult rats. Psychopharmacol. 226: 589–600, https://doi.org/10.1007/s00213-012-2931-6.Search in Google Scholar PubMed

Scheggia, D., Managò, F., Maltese, F., Bruni, S., Nigro, M., Dautan, D., Latuske, P., Contarini, G., Gomez-Gonzalo, M., Requie, L.M., et al.. (2020). Somatostatin interneurons in the prefrontal cortex control affective state discrimination in mice. Nat. Neurosci. 23: 47–60, https://doi.org/10.1038/s41593-019-0551-8.Search in Google Scholar PubMed

Schjelderup‐Ebbe, T. (1922). Beiträge zur Sozialpsychologie des Haushuhns.[Observation on the social psychology of domestic fowls. Z. Psychol. Physiol. Sinnesorgane Abt 1 Z. Psychol. 88: 225.Search in Google Scholar

Sharma, A., Satterthwaite, T.D., Vandekar, L., Katchmar, N., Daldal, A., Ruparel, K., Elliott, M.A., Baldassano, C., Thase, M.E., Gur, R.E., et al.. (2016). Divergent relationship of depression severity to social reward responses among patients with bipolar versus unipolar depression. Psychiatry Res. Neuroimaging. 254: 18–25, https://doi.org/10.1016/j.pscychresns.2016.06.003.Search in Google Scholar PubMed PubMed Central

Simola, N. and Granon, S. (2019). Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology 159: 107420, https://doi.org/10.1016/j.neuropharm.2018.11.008.Search in Google Scholar PubMed

Song, C. and Leonard, B.E. (2005). The olfactory bulbectomised rat as a model of depression. Neurosci. Biobehav. Rev. 29: 627–647, https://doi.org/10.1016/j.neubiorev.2005.03.010.Search in Google Scholar PubMed

Stafford, N.P., Jones, A.M., and Drugan, R.C. (2015). Ultrasonic vocalizations during intermittent swim stress forecasts resilience in a subsequent juvenile social exploration test of anxiety. Behav. Brain Res. 287: 196–199, https://doi.org/10.1016/j.bbr.2015.03.041.Search in Google Scholar PubMed

Takahashi, N., Kashino, M., and Hironaka, N. (2010). Structure of rat ultrasonic vocalizations and its relevance to behavior. PLoS One 5: e14115, https://doi.org/10.1371/journal.pone.0014115.Search in Google Scholar PubMed PubMed Central

Thiele, S., Furlanetti, L., Pfeiffer, L.-M., Coenen, V.A., and Döbrössy, M.D. (2018). The effects of bilateral, continuous, and chronic deep brain stimulation of the medial forebrain bundle in a rodent model of depression. Exp. Neurol. 303: 153–161, https://doi.org/10.1016/j.expneurol.2018.02.002.Search in Google Scholar PubMed

Trezza, V., Campolongo, P., and Vanderschuren, L.J.M.J. (2011). Evaluating the rewarding nature of social interactions in laboratory animals. Dev. Cogn. Neurosci. 1: 444–458, https://doi.org/10.1016/j.dcn.2011.05.007.Search in Google Scholar PubMed PubMed Central

Tsuda, M.C. and Ogawa, S. (2012). Long-lasting consequences of neonatal maternal separation on social behaviors in ovariectomized female mice. PLoS One 7: e33028, https://doi.org/10.1371/journal.pone.0033028.Search in Google Scholar PubMed PubMed Central

Uphouse, L. (2000). Female gonadal hormones, serotonin, and sexual receptivity. Brain Res. Rev. 33: 242–257, https://doi.org/10.1016/s0165-0173(00)00032-1.Search in Google Scholar PubMed

Van De Poll, N.E., Van Dis, H., and Bermond, B. (1977). The induction of mounting behavior in female rats by p-chlorophenylalanine. Eur. J. Pharmacol. 41: 225–229, https://doi.org/10.1016/0014-2999(77)90214-x.Search in Google Scholar PubMed

Valvassori, S.S., Budni, J., Varela, R.B., and Quevedo, J. (2013). Contributions of animal models to the study of mood disorders. Rev. Bras. Psiquiatr. 35: S121–S131, https://doi.org/10.1590/1516-4446-2013-1168.Search in Google Scholar PubMed

Waldinger, M.D., Zwinderman, A.H., and Olivier, B. (2001). Antidepressants and ejaculation: a double-blind, randomized, placebo-controlled, fixed-dose study with paroxetine, sertraline, and nefazodone. J. Clin. Psychopharmacol. 21: 293–297, https://doi.org/10.1097/00004714-200106000-00007.Search in Google Scholar PubMed

Wang, F., Kessels, H.W., and Hu, H. (2014). The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci. 37: 674–682, https://doi.org/10.1016/j.tins.2014.07.005.Search in Google Scholar PubMed

Wang, H., Liu, X., Zhang, Z., Han, Z., Jiang, Y., Qiao, Y., Liu, T., Chen, J., and Chen, Y. (2023). Effects of tadalafil on sexual behavior of male rats induced by chronic unpredictable mild stress. Sex. Med. 11: qfad019, https://doi.org/10.1093/sexmed/qfad019.Search in Google Scholar PubMed PubMed Central

Wang, F., Zhu, J., Zhu, H., Zhang, Q., Lin, Z., and Hu, H. (2011). Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334: 693–697, https://doi.org/10.1126/science.1209951.Search in Google Scholar PubMed

Wang, J., Mann, F., Lloyd-Evans, B., Ma, R., and Johnson, S. (2018). Associations between loneliness and perceived social support and outcomes of mental health problems: a systematic review. BMC Psychiatr. 18: 156, https://doi.org/10.1186/s12888-018-1736-5.Search in Google Scholar PubMed PubMed Central

Waraich, P., Goldner, E.M., Somers, J.M., and Hsu, L. (2004). Prevalence and incidence studies of mood disorders: a systematic review of the literature. Can. J. Psychiatr. 49: 124–138, https://doi.org/10.1177/070674370404900208.Search in Google Scholar PubMed

Wei, Y.-C., Wang, S.-R., Jiao, Z.-L., Zhang, W., Lin, J.-K., Li, X.-Y., Li, S.-S., Zhang, X., and Xu, X.-H. (2018). Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. Nat. Commun. 9: 279, https://doi.org/10.1038/s41467-017-02648-0.Search in Google Scholar PubMed PubMed Central

Wendler, E., de Souza, C.P., Dornellas, A.P.S., Santos, L.E., Ferreira, S.T., Galduróz, J.C.F., Wöhr, M., Schwarting, R.K.W., and Andreatini, R. (2019). Mania-like elevated mood in rats: enhanced 50-kHz ultrasonic vocalizations after sleep deprivation. Prog. Neuropsychopharmacol. Biol. Psychiatr. 88: 142–150, https://doi.org/10.1016/j.pnpbp.2018.07.002.Search in Google Scholar PubMed

Winters, C., Gorssen, W., Wöhr, M., and D’Hooge, R. (2023). BAMBI: a new method for automated assessment of bidirectional early-life interaction between maternal behavior and pup vocalization in mouse dam-pup dyads. Front. Behav. Neurosci. 17: 1139254, https://doi.org/10.3389/fnbeh.2023.1139254.Search in Google Scholar PubMed PubMed Central

Wittchen, H.-U. (2012). The burden of mood disorders. Science 338: 15, https://doi.org/10.1126/science.1230817.Search in Google Scholar PubMed

Wittchen, H.U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jönsson, B., Olesen, J., Allgulander, C., Alonso, J., Faravelli, C., et al.. (2011). The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21: 655–679, https://doi.org/10.1016/j.euroneuro.2011.07.018.Search in Google Scholar PubMed

Wöhr, M. (2022). Measuring mania‐like elevated mood through amphetamine‐induced 50‐kHz ultrasonic vocalizations in rats. Br. J. Pharmacol. 179: 4201–4219, https://doi.org/10.1111/bph.15487.Search in Google Scholar PubMed

Wöhr, M., Borta, A., and Schwarting, R.K.W. (2005). Overt behavior and ultrasonic vocalization in a fear conditioning paradigm: a dose–response study in the rat. Neurobiol. Learn. Mem. 84: 228–240, https://doi.org/10.1016/j.nlm.2005.07.004.Search in Google Scholar PubMed

Wöhr, M. and Schwarting, R.K.W. (2010). Rodent ultrasonic communication and its relevance for models of neuropsychiatric disorders. E-Neuroforum 16: 71–80, https://doi.org/10.1007/s13295-010-0012-z.Search in Google Scholar

Wolff, J.O. (2007). Social biology of rodents. Integr. Zool. 2: 193–204, https://doi.org/10.1111/j.1749-4877.2007.00062.x.Search in Google Scholar PubMed

World Health Organization (2019). International statistical classification of diseases and related health problems, 11th ed., Available at: https://icd.who.int/.Search in Google Scholar

Wright, J.M., Dobosiewicz, M.R.S., and Clarke, P.B.S. (2013). The role of dopaminergic transmission through D1-like and D2-like receptors in amphetamine-induced rat ultrasonic vocalizations. Psychopharmacology 225: 853–868, https://doi.org/10.1007/s00213-012-2871-1.Search in Google Scholar PubMed

Yang, C.F., Chiang, M.C., Gray, D.C., Prabhakaran, M., Alvarado, M., Juntti, S.A., Unger, E.K., Wells, J.A., and Shah, N.M. (2013). Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153: 896–909, https://doi.org/10.1016/j.cell.2013.04.017.Search in Google Scholar PubMed PubMed Central

Yizhar, O. and Levy, D.R. (2021). The social dilemma: prefrontal control of mammalian sociability. Curr. Opin. Neurobiol. 68: 67–75, https://doi.org/10.1016/j.conb.2021.01.007.Search in Google Scholar PubMed

Yu, Z.-X., Zha, X., and Xu, X.-H. (2023). Estrogen-responsive neural circuits governing male and female mating behavior in mice. Curr. Opin. Neurobiol. 81: 102749, https://doi.org/10.1016/j.conb.2023.102749.Search in Google Scholar PubMed

Zhang, Y., Feng, W., Wang, Z., Pang, Y., Jin, Y., Chen, S., Ding, S., Wang, T., Zou, Y., Sun, P., et al.. (2023). Early growth response 2 in the mPFC regulates mouse social and cooperative behaviors. Lab. Anim. 52: 37–50, https://doi.org/10.1038/s41684-022-01090-0.Search in Google Scholar PubMed

Received: 2023-04-18
Accepted: 2023-08-14
Published Online: 2023-08-28
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2023-0190/html
Scroll to top button