New lipophilic organic nitrates: candidates for chronic skin disease therapy
-
Elisabetta Marini
, Federica Sodano , Barbara Rolando , Konstantin Chegaev , Daniela Claudia Maresca , Angela Ianaro , Giuseppe Ercolanound Loretta Lazzarato
Abstract
Organic nitrates are widely used, but their chronic efficacy is blunted due to the development of tolerance. The properties of new tolerance free organic nitrates were studied. Their lipophilicity profile and passive diffusion across polydimethylsiloxane membrane and pig ear-skin, and their efficacy in tissue regeneration using HaCaT keratinocytes were evaluated. The permeation results show that these nitrates have a suitable profile for NO topical administration on the skin. Furthermore, the derivatives with higher NO release exerted a pro-healing effect on HaCaT cells. This new class of organic nitrates might be a promising strategy for the chronic treatment of skin pathologies.
Acknowledgments
The authors wish to thank Prof. Alberto Gasco for helpful discussions.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC) (MFAG No. 26002 to G.E)., by the Italian Government grants (PRIN 2017 No. 2017BA9LM5 to A.I.), and by Università degli Studi di Torino, Ric. Loc. 2017 and 2019 to E.M., and 2021 to K.C.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Adler, B.L. and Friedman, A.J. (2015). Nitric oxide therapy for dermatologic disease. Future Sci. OA 1: 37–50.10.4155/fso.15.37Suche in Google Scholar PubMed PubMed Central
Ahmed, R., Augustine, R., Chaudhry, M., Akhtar, U.A., Zahid, A.A., Tariq, M., Falahati, M., and Ahmadabd Hasan, I.S.A. (2022). Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: state of the art and recent trends. Biomed. Pharmacother. 149: 112707.10.1016/j.biopha.2022.112707Suche in Google Scholar PubMed
Altomare, D.F., Rinaldi, M., Milito, G., Arcanà, F., Spinelli, F., Nardelli, N., Scardigno, D., Pulvirenti-D’Urso, A., Bottini, C., Pescatori, M., et al.. (2000). Glyceryl trinitrate for chronic anal fissure--healing or headache? Results of a multicenter, randomized, placebo-controled, double-blind trial. Dis. Colon Rectum 43: 174–179.10.1007/BF02236977Suche in Google Scholar PubMed
Avdeef, A. (2003). Absorption and drug development: solubility, permeability and charge state. Wiley Interscience, Hoboken, New Jersey.10.1002/047145026XSuche in Google Scholar
Baldwin, H., Blanco, D., McKeever, C., Paz, N., Vasquez, Y.N., Quiring, J., Enloe, C., De León, E., and Stasko, N. (2016). Results of a phase 2 efficacy and safety study with SB204, an investigational topical nitric oxide-releasing drug for the treatment of acne vulgaris. J. Clin. Aesthet. Dermatol. 9: 12–18.Suche in Google Scholar
Cals-Grierson, M.-M. and Ormerod, A.D. (2004). Nitric oxide function in the skin. Nitric Oxide 10: 179–193.10.1016/j.niox.2004.04.005Suche in Google Scholar PubMed
Carapeti, E.A., Kamm, M.A., McDonald, P.J., Chadwick, S.J.D., Melville, D., and Phillips, R.K.S. (1999). Randomised controlled trial shows that glyceryl trinitrate heals anal fissures, higher doses are not more effective, and there is a high recurrence rate. Gut 44: 727–730.10.1136/gut.44.5.727Suche in Google Scholar PubMed PubMed Central
Chegaev, K., Lazzarato, L., Tron, G.-C., Marabello, D., Di Stilo, A., Cena, C., Fruttero, R., Gasco, A., Vanthuyne, N., and Roussel, C. (2006). Synthesis, chiral HPLC resolution and configuration assignment of 1-phenylglyceryl trinitrate stereomers. Chirality 18: 430–436.10.1002/chir.20278Suche in Google Scholar PubMed
Chegaev, K., Lazzarato, L., Marcarino, P., Di Stilo, A., Fruttero, R., Vanthuyne, N., Roussel, C., and Gasco, A. (2009). Synthesis of some novel organic nitrates and comparative in vitro study of their vasodilator profile. J. Med. Chem. 52: 4020–4025.10.1021/jm9002236Suche in Google Scholar PubMed
Cronin, M.T.D., Dearden, J.C., Gupta, R., and Moss, G.P. (1998). An investigation of the mechanism of flux across polydimethylsiloxane membranes by use of quantitative structure-permeability relationships. J. Pharm. Pharmacol. 50: 143–152.10.1111/j.2042-7158.1998.tb06169.xSuche in Google Scholar PubMed
Cronin, M.T.D., Dearden, J.C., Moss, G.P., and Murray-Dichson, G. (1999). Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships. Eur. J. Pharmaceut. Sci. 7: 325–330.10.1016/S0928-0987(98)00041-4Suche in Google Scholar PubMed
Daiber, A., Wenzel, P., Oelze, M., and Münzel, T. (2008). New insights into bioactivation of organic nitrates, nitrate tolerance and cross-tolerance. Clin. Res. Cardiol. 97: 12–20.10.1007/s00392-007-0588-7Suche in Google Scholar PubMed
Daiber, A., Oelze, M., Wenzel, P., Bollmann, F., Pautz, A., and Kleinert, H. (2012). Heme oxygenase-1 induction and organic nitrate therapy: beneficial effects on endothelial dysfunction, nitrate tolerance, and vascular oxidative stress. Int. J. Hypertens. 2012: 842632, https://doi.org/10.1155/2012/842632.Suche in Google Scholar PubMed PubMed Central
Dick, I.P. and Scott, R.C. (1992). Pig ear skin as an in-vitro model for human skin permeability. J. Pharm. Pharmacol. 44: 640–645.10.1111/j.2042-7158.1992.tb05485.xSuche in Google Scholar PubMed
Enoch, S. and Leaper, D.J. (2005). Basic science of wound healing. Surgery 23: 37–42.10.1383/surg.23.2.37.60352Suche in Google Scholar
Förstermann, U., Closs, E.I., Pollock, J.S., Nakane, M., Schwarz, P., Gath, I., and Kleinert, H. (1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23: 1121–1131.10.1161/01.HYP.23.6.1121Suche in Google Scholar PubMed
Freedman, J.E. and Loscalzo, J. (2003). Nitric oxide and its relationship to thrombotic disorder. J. Thromb. Haemostasis 1: 1183–1188.10.1046/j.1538-7836.2003.00180.xSuche in Google Scholar PubMed
Ganzarolli de Oliveira, M. (2016). S-nitrosothiols as platforms for topical nitric oxide delivery. Basic Clin. Pharmacol. Toxicol. 119: 49–56.10.1111/bcpt.12588Suche in Google Scholar PubMed
Geinoz, S., Rey, S., Boss, G., Bunge, A.L., Guy, R.H., Carrupt, P.-A., Reist, M., and Testa, B. (2002). Quantative structure-permeation relationships for solute transport across silicone membranes. Pharm. Res. 19: 1622–1629.10.1023/A:1020745026766Suche in Google Scholar PubMed
Geinoz, S., Guy, R.H., Testa, B., and Carrupt, P.-A. (2004). Quantitative structure-permeation relationships (QSPeRs) to predict skin permeation: a critical review. Pharm. Res. 21: 83–92.10.1023/B:PHAM.0000012155.27488.2bSuche in Google Scholar PubMed
Ghaffari, A., Miller, C.C., McMullin, B., and Ghahary, A. (2006). Potential application of gaseous nitric oxide as a topical antimicrobial agent. Nitric Oxide 14: 21–29.10.1016/j.niox.2005.08.003Suche in Google Scholar PubMed
Gori, T. (2020). Exogenous NO therapy for the treatment and prevention of atherosclerosis. Int. J. Mol. Sci. 21: 2703–2717.10.3390/ijms21082703Suche in Google Scholar PubMed PubMed Central
Heck, D.E., Laskin, D.L., Gardner, C.R., and Laskin, J.D. (1992). Epidermal growth factor suppresses nitric oxide and hydrogen peroxide production by keratinocytes. Potential role for nitric oxide in the regulation of wound healing. J. Biol. Chem. 267: 21277–21280.10.1016/S0021-9258(19)36601-3Suche in Google Scholar
Jugdutt, B.I. (1992). Role of nitrates after acute myocardial infarction. Am. J. Med. 70: 82–87.10.1016/0002-9149(92)90598-SSuche in Google Scholar
Karadzovska, D., Brooks, J.D., Monteiro-Riviere, N.A., and Riviere, J.E. (2013). Predicting skin permeability from complex vehicles. Adv. Drug Deliv. Rev. 65: 265–277.10.1016/j.addr.2012.01.019Suche in Google Scholar PubMed
Leier, C.V., Bambach, D., Thompson, M.J., Cattaneo, S.M., Goldberg, R.J., and Unverferth, D.V. (1981). Central and regional hemodynamic effects of intravenous isosorbide dinitrate, nitroglycerin and nitroprusside in patients with congestive heart failure. Am. J. Cardiol. 48: 1115–1123.10.1016/0002-9149(81)90329-5Suche in Google Scholar PubMed
Malone-Povolny, M.J., Maloney, S.E., and Schoenfisch, M.H. (2019). Nitric oxide therapy for diabetic wound healing. Adv. Healthcare Mater. 8: e1801210.10.1002/adhm.201801210Suche in Google Scholar PubMed PubMed Central
Marini, E., Giorgis, M., Leporati, M., Rolando, B., Chegaev, K., Lazzarato, L., Bertinaria, M., Vincenti, M., and Di Stilo, A. (2022). Multitarget antioxidant NO-donor organic nitrates: a novel approach to overcome nitrates tolerance, an ex vivo study. Antioxidants 11: 166–186.10.3390/antiox11010166Suche in Google Scholar PubMed PubMed Central
Mizuno, Y., Harada, E., Kugimiya, F., Shono, M., Kusumegi, I., Yoshimura, M., Kinoshita, K., and Yasue, H. (2020). East Asian variant mitochondrial aldehyde dehydrogenase-2 genotype exacerbates nitrate tolerance in patients with coronary spastic angina. Circ. J. 84: 479–486.10.1253/circj.CJ-19-0989Suche in Google Scholar PubMed
Münzel, T., Daiber, A., and Mülsch, A. (2005). Explaining the phenomenon of nitrate tolerance. Circ. Res. 97: 618–628.10.1161/01.RES.0000184694.03262.6dSuche in Google Scholar PubMed
Nahir, A.M., Shapira, D., and Sharef, Y. (1986). Double-blind randomized trial of NITRODERM TTS® in the treatment of Raynaud’s phenomenon. Isr. J. Med. Sci. 22: 139–142.Suche in Google Scholar
Neupane, R., Boddu, S.H.S., Renukuntla, J., Babu, R.J., and Tiwari, A.K. (2020). Alternatives to biological skin in permeation studies: current trends and possibilities. Pharmaceutics 12: 152–177.10.3390/pharmaceutics12020152Suche in Google Scholar PubMed PubMed Central
Omidkhoda, S.F., Razavi, B.M., Imenshahidi, M., Rameshrad, M., and Hosseinzadeh, H. (2020). Evaluation of possible effects of crocin against nitrate tolerance and endothelial dysfunction. Iran. J. Basic Med. Sci. 23: 303–310.Suche in Google Scholar
Pecoraro, B., Tutone, M., Hoffman, E., Hutter, V., Almerico, A.M., and Traynor, M. (2019). Predicting skin permeability by means of computational approaches: reliability and caveats in pharmaceutical studies. J. Chem. Inf. Model. 59: 1759–1771.10.1021/acs.jcim.8b00934Suche in Google Scholar PubMed
Pulsoni, I., Lubda, M., Aiello, M., Fedi, A., Marzagalli, M., von Hagen, J., and Scaglione, S. (2022). Comparison between Franz diffusion cell and a novel micro-physiological system for in vitro penetration assay using different skin models. SLAS Technol. 27: 161–171.10.1016/j.slast.2021.12.006Suche in Google Scholar PubMed
Pyo, S.M. and Maibach, H.I. (2019). Skin metabolism: relevance of skin enzymes for rational drug design. Skin Pharmacol. Physiol. 32: 283–293.10.1159/000501732Suche in Google Scholar PubMed
Rolim, W.R., Pieretti, J.C., Renó, D.L.S., Lima, B.A., Nascimento, M.H.M., Ambrosio, F.N., Lombello, C.B., Brocchi, M., de Souza, A.C.S., and Seabra, A.B. (2019). Antimicrobial activity and cytotoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications. ACS Appl. Mater. Interfaces 11: 6589–6604.10.1021/acsami.8b19021Suche in Google Scholar PubMed
Schairer, D.O., Chouake, J.S., Nosanchuk, J.D., and Friedman, A.J. (2012). The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 3: 271–279.10.4161/viru.20328Suche in Google Scholar PubMed PubMed Central
Seabra, A.B., da Silva, R., and de Oliveira, M.G. (2005). Polynitrosatedpolyesters: preparation, characterization, and potential use for topical nitric oxide release. Biomacromolecules 6: 2512–2520.10.1021/bm050216zSuche in Google Scholar PubMed
Sekkat, N. and Guy, R.H. (2001). Biological models to study skin permeation. In: Testa, B., van de Waterbeend, H., Folkers, G., and Guy, R. (Eds.), Pharmakokinetic optimisation in drug research. Wiley-VCH, Wheinheim, pp. 155–172.10.1002/9783906390437.ch10Suche in Google Scholar
Snyder, S.H. (1992). Nitric oxide: first in a new class of neurotransmitters. Science 257: 494–496.10.1126/science.1353273Suche in Google Scholar PubMed
Suschek, C.V., Feibel, D., von Kohout, M., and Opländer, C. (2022). Enhancement of nitric oxide bioavailability by modulation of cutaneous nitric oxide stores. Biomedicines 10: 2124.10.3390/biomedicines10092124Suche in Google Scholar PubMed PubMed Central
Supe, S. and Takudage, P. (2021). Methods for evaluating penetration of drug into the skin: a review. Skin Res. Technol. 27: 299–308.10.1111/srt.12968Suche in Google Scholar PubMed
Svensson, C.K. (2009). Biotransformation of drugs in human skin. Drug Metab. Dispos. 37: 247–253.10.1124/dmd.108.024794Suche in Google Scholar PubMed
Todo, H. (2017). Transdermal permeation of drugs in various animal species. Pharmaceutics 9: 33–44.10.3390/pharmaceutics9030033Suche in Google Scholar PubMed PubMed Central
Urzedo, A.L., Gonçalves, M.C., Nascimento, M.H.M., Lombello, C.B., Nakazato, G., and Seabra, A.B. (2020). Cytotoxicity and antibacterial activity of alginate hydrogel containing nitric oxide donor and silver nanoparticles for topical applications. ACS Biomater. Sci. Eng. 6: 2117–2134.10.1021/acsbiomaterials.9b01685Suche in Google Scholar PubMed
Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T., and Janczuk, A.J. (2002). Nitric oxide donors: chemical activities and biological applications. Chem. Rev. 102: 1091–1134.10.1021/cr000040lSuche in Google Scholar PubMed
Watson, S.J., Kamm, M.A., Nicholls, R.J., and Phillips, R.K.S. (1996). Topical glyceryl trinitrate in the treatment of chronic anal fissure. Br. J. Surg. 83: 771–775.10.1002/bjs.1800830614Suche in Google Scholar PubMed
Weller, R. (2003). Nitric oxide donors and the skin: useful therapeutic agents? Clin. Sci. 105: 533–535.10.1042/CS20030241Suche in Google Scholar PubMed
Wigley, F.M. and Flavahan, N.A. (2016). Raynaud’s phenomenon. N. Engl. J. Med. 375: 556–565.10.1056/NEJMra1507638Suche in Google Scholar PubMed
Zhang, Y., Tang, K., Chen, B., Zhou, S., Li, N., Liu, C., Yang, J., Lin, R., Zhang, T., and He, W. (2019). A polyethylenimine-based diazeniumdiolate nitric oxide donor accelerates wound healing. Biomater. Sci. 7: 1607–1616.10.1039/C8BM01519HSuche in Google Scholar PubMed
Zhou, X., Zhang, J., Feng, G., Shen, J., Kong, D., and Zhao, Q. (2016). Nitric oxide-releasing biomaterials for biomedical applications. Curr. Med. Chem. 23: 2579–2601.10.2174/0929867323666160729104647Suche in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/hsz-2022-0324).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Unravelling the genetic links between Parkinson’s disease and lung cancer
- Small-molecule metabolites in SARS-CoV-2 treatment: a comprehensive review
- Research Articles/Short Communications
- Molecular Medicine
- Dynamic regulation of eEF1A1 acetylation affects colorectal carcinogenesis
- New lipophilic organic nitrates: candidates for chronic skin disease therapy
- Cell Biology and Signaling
- Altered population activity and local tuning heterogeneity in auditory cortex of Cacna2d3-deficient mice
- Inhibition of miR-143-3p alleviates myocardial ischemia reperfusion injury via limiting mitochondria-mediated apoptosis
- Proteolysis
- The Mycobacterium tuberculosis prolyl dipeptidyl peptidase cleaves the N-terminal peptide of the immunoprotein CXCL-10
Artikel in diesem Heft
- Frontmatter
- Reviews
- Unravelling the genetic links between Parkinson’s disease and lung cancer
- Small-molecule metabolites in SARS-CoV-2 treatment: a comprehensive review
- Research Articles/Short Communications
- Molecular Medicine
- Dynamic regulation of eEF1A1 acetylation affects colorectal carcinogenesis
- New lipophilic organic nitrates: candidates for chronic skin disease therapy
- Cell Biology and Signaling
- Altered population activity and local tuning heterogeneity in auditory cortex of Cacna2d3-deficient mice
- Inhibition of miR-143-3p alleviates myocardial ischemia reperfusion injury via limiting mitochondria-mediated apoptosis
- Proteolysis
- The Mycobacterium tuberculosis prolyl dipeptidyl peptidase cleaves the N-terminal peptide of the immunoprotein CXCL-10