Inhibition of miR-143-3p alleviates myocardial ischemia reperfusion injury via limiting mitochondria-mediated apoptosis
-
Chuang-Hong Lu
, De-Xin Chen , Kun Dong , Yun-Jiao Wu , Na Na , Hong Wen , Yao-shi Hu , Yuan-Ying Liang , Si-Yi Wu , Bei-You Lin , Feng Huangand Zhi-Yu Zeng
Abstract
MicroRNA (miR)-143-3p is a potential regulatory molecule in myocardial ischemia/reperfusion injury (MI/RI), wherein its expression and pathological effects remains controversial. Thus, a mouse MI/RI and cell hypoxia/reoxygenation (H/R) models were built for clarifying the miR-143-3p’s role in MI/RI. Following myocardial ischemia for 30 min, mice underwent reperfusion for 3, 6, 12 and 24 h. It was found miR-143-3p increased in the ischemic heart tissue over time after reperfusion. Cardiomyocytes transfected with miR-143-3p were more susceptible to apoptosis. Mechanistically, miR-143-3p targeted B cell lymphoma 2 (bcl-2). And miR-143-3p inhibition reduced cardiomyocytes apoptosis upon H/R, whereas it was reversed by a specific bcl-2 inhibitor ABT-737. Of note, miR-143-3p inhibition upregulated bcl-2 with better mitochondrial membrane potential (Δψm), reduced cytoplasmic cytochrome c (cyto-c) and caspase proteins, and minimized infarction area in mice upon I/R. Collectively, inhibition of miR-143-3p might alleviate MI/RI via targeting bcl-2 to limit mitochondria-mediated apoptosis. To our knowledge, this study further clarifies the miR-143-3p’s pathological role in the early stages of MI/RI, and inhibiting miR-143-3p could be an effective treatment for ischemic myocardial disease.
Funding source: Guangdong Medical Science and technology research fund project
Award Identifier / Grant number: A2022115
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 81760057
Award Identifier / Grant number: 82070279
Funding source: Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention
Award Identifier / Grant number: 19-245-34
Funding source: Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases
Award Identifier / Grant number: AD17129014
-
Author contributions: CH conceptualized and wrote the manuscript. DX and YJ built in vivo and in vitro models. YS, YY and SY conducted experimental detection. K collected and analyzed data. N, H and BY revised the manuscript. F and ZY conceptualized, revised and supported the manuscript. All of the authors in this study have read and given approval to the submission.
-
Research funding: This work was supported by the National Natural Science Foundation of China (82070279 and 81760057), Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention (19-245-34), Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases (AD17129014), Guangdong Medical Science and technology research fund project (A2022115).
-
Conflict of interest statement: Authors in this study have no potential conflicts of interest.
References
Al-Salam, S. and Hashmi, S. (2018). Myocardial ischemia reperfusion injury: apoptotic, inflammatory and oxidative stress role of galectin-3. Cell. Physiol. Biochem. 50: 1123–1139, https://doi.org/10.1159/000494539.Search in Google Scholar PubMed
Bock, F.J. and Tait, S.W.G. (2020). Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 21: 85–100, https://doi.org/10.1038/s41580-019-0173-8.Search in Google Scholar PubMed
Bostjancic, E., Zidar, N., Stajer, D., and Glavac, D. (2010). Micrornas mir-1, mir-133a, mir-133b and mir-208 are dysregulated in human myocardial infarction. Cardiology 115: 163–169, https://doi.org/10.1159/000268088.Search in Google Scholar PubMed
Burke, P.J. (2017). Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer 3: 857–870, https://doi.org/10.1016/j.trecan.2017.10.006.Search in Google Scholar PubMed PubMed Central
Caumanns, J.J., van Wijngaarden, A., Kol, A., Meersma, G.J., Jalving, M., Bernards, R., van der Zee, A.G.J., Wisman, G.B.A., and de Jong, S. (2019). Low-dose triple drug combination targeting the pi3k/akt/mtor pathway and the mapk pathway is an effective approach in ovarian clear cell carcinoma. Cancer Lett. 461: 102–111, https://doi.org/10.1016/j.canlet.2019.07.004.Search in Google Scholar PubMed
Chang, L.P., Shi, R., Wang, X.J., and Bao, Y. (2019). Gypenoside a protects ischemia/reperfusion injuries by suppressing mir‐143‐3p level via the activation of ampk/foxo1 pathway. Biofactors 46: 432–444, https://doi.org/10.1002/biof.1601.Search in Google Scholar PubMed
Chen, A., Wen, J.L., Lu, C.H., Lin, B.Y., Xian, S.L., Huang, F., Wu, Y.J., and Zeng, Z.Y. (2020). Inhibition of mir-155-5p attenuates the valvular damage induced by rheumatic heart disease. Int. J. Mol. Med. 45: 429–440, https://doi.org/10.3892/ijmm.2019.4420.Search in Google Scholar PubMed PubMed Central
Chen, C., Hu, L.X., Dong, T., Wang, G.Q., Wang, L.H., Zhou, X.P., Jiang, Y., Murao, K., Lu, S.Q., Chen, J.W., et al.. (2013). Apoptosis and autophagy contribute to gender difference in cardiac ischemia-reperfusion induced injury in rats. Life Sci. 93: 265–270, https://doi.org/10.1016/j.lfs.2013.06.019.Search in Google Scholar PubMed
Chen, C.B., Lu, C.H., He, D.W., Na, N., Wu, Y.J., Luo, Z.C., and Huang, F. (2021a). Inhibition of hmgb1 alleviates myocardial ischemia/reperfusion injury in diabetic mice via suppressing autophagy. Microvasc. Res. 138: 104204, https://doi.org/10.1016/j.mvr.2021.104204.Search in Google Scholar PubMed
Chen, G., Wang, M., Ruan, Z., Zhu, L., and Tang, C. (2021b). Mesenchymal stem cell-derived exosomal mir-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy. Life Sci. 280: 119742, https://doi.org/10.1016/j.lfs.2021.119742.Search in Google Scholar PubMed
Cordes, K.R., Sheehy, N.T., White, M.P., Berry, E.C., Morton, S.U., Muth, A.N., Lee, T.H., Miano, J.M., Ivey, K.N., and Srivastava, D. (2009). Mir-145 and mir-143 regulate smooth muscle cell fate and plasticity. Nature 460: 705–710, https://doi.org/10.1038/nature08195.Search in Google Scholar PubMed PubMed Central
Du, J.K., Cong, B.H., Yu, Q., Wang, H., Wang, L., Wang, C.N., Tang, X.L., Lu, J.Q., Zhu, X.Y., and Ni, X. (2016). Upregulation of microrna-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function. Free Radic. Biol. Med. 96: 406–417, https://doi.org/10.1016/j.freeradbiomed.2016.05.006.Search in Google Scholar PubMed
Fröhlich, G.M., Meier, P., White, S.K., Yellon, D.M., and Hausenloy, D.J. (2013). Myocardial reperfusion injury: looking beyond primary pci. Eur. Heart J. 34: 1714–1722, https://doi.org/10.1093/eurheartj/eht090.Search in Google Scholar PubMed
Gao, S., Ge, L.H., Zhao, Y.M., Li, P., Li, Y.Y., and Zhao, W. (2022). Hsa-mirna-143-3p regulates the odontogenic differentiation of human stem cells from the apical papilla by targeting nfic. Int. Endod. J. 55: 263–274, https://doi.org/10.1111/iej.13666.Search in Google Scholar PubMed
Guo, Z., Zhao, M., Jia, G., Ma, R., and Li, M. (2021). Lncrna part1 alleviated myocardial ischemia/reperfusion injury via suppressing mir-503-5p/birc5 mediated mitochondrial apoptosis. Int. J. Cardiol. 338: 176–184, https://doi.org/10.1016/j.ijcard.2021.05.044.Search in Google Scholar PubMed
Hausenloy, D.J. and Yellon, D.M. (2015). Targeting myocardial reperfusion injury--the search continues. N. Engl. J. Med. 373: 1073–1075, https://doi.org/10.1056/nejme1509718.Search in Google Scholar PubMed
Hergenreider, E., Heydt, S., Tréguer, K., Boettger, T., Horrevoets, A.J., Zeiher, A.M., Scheffer, M.P., Frangakis, A.S., Yin, X., Mayr, M., et al.. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through mirnas. Nat. Cell Biol. 14: 249–256, https://doi.org/10.1038/ncb2441.Search in Google Scholar PubMed
Heusch, G. and Gersh, B., J. (2017). The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur. Heart J. 38: 774–784, https://doi.org/10.1093/eurheartj/ehw224.Search in Google Scholar PubMed
Hong, H., Tao, T., Chen, S., Liang, C., Qiu, Y., Zhou, Y., and Zhang, R. (2017). Microrna-143 promotes cardiac ischemia-mediated mitochondrial impairment by the inhibition of protein kinase cepsilon. Basic Res. Cardiol. 112: 60, https://doi.org/10.1007/s00395-017-0649-7.Search in Google Scholar PubMed
Korshunova, A.Y., Blagonravov, M.L., Neborak, E.V., Syatkin, S.P., Sklifasovskaya, A.P., Semyatov, S.M., and Agostinelli, E. (2021). Bcl2-regulated apoptotic process in myocardial ischemia-reperfusion injury. Int. J. Mol. Med. 47: 23–36, https://doi.org/10.3892/ijmm.2020.4781.Search in Google Scholar PubMed PubMed Central
Krech, J., Tong, G., Wowro, S., Walker, C., Rosenthal, L.M., Berger, F., and Schmitt, K.R.L. (2017). Moderate therapeutic hypothermia induces multimodal protective effects in oxygen-glucose deprivation/reperfusion injured cardiomyocytes. Mitochondrion 35: 1–10, https://doi.org/10.1016/j.mito.2017.04.001.Search in Google Scholar PubMed
Liu, S., He, Y., Shi, J., Liu, L., Ma, H., He, L., and Guo, Y. (2019). Downregulation of mirna-30a enhanced autophagy in osthole-alleviated myocardium ischemia/reperfusion injury. J. Cell. Physiol. 1–10, https://doi.org/10.1002/jcp.28556.Search in Google Scholar PubMed
Makhdoumi, P., Roohbakhsh, A., and Karimi, G. (2016). Micrornas regulate mitochondrial apoptotic pathway in myocardial ischemia-reperfusion-injury. Biomed. Pharmacother. 84: 1635–1644, https://doi.org/10.1016/j.biopha.2016.10.073.Search in Google Scholar PubMed
Martinou, J.C. and Youle, R.J. (2011). Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21: 92–101, https://doi.org/10.1016/j.devcel.2011.06.017.Search in Google Scholar PubMed PubMed Central
Ogawa, K., Noda, A., Ueda, J., Ogata, T., Matsuyama, R., Nishizawa, Y., Qiao, S., Iwata, S., Ito, M., Fujihara, Y., et al.. (2020). Forced expression of mir-143 and -145 in cardiomyocytes induces cardiomyopathy with a reductive redox shift. Cell. Mol. Biol. Lett. 25: 40, https://doi.org/10.1186/s11658-020-00232-x.Search in Google Scholar PubMed PubMed Central
Qian, Y., Teng, Y., Li, Y., Lin, X., Guan, M., Li, Y., Cao, X., and Gao, Y. (2019). Mir-143-3p suppresses the progression of nasal squamous cell carcinoma by targeting bcl-2 and igf1r. Biochem. Biophys. Res. Commun. 518: 492–499, https://doi.org/10.1016/j.bbrc.2019.08.075.Search in Google Scholar PubMed
Reed, G.W., Rossi, J.E., and Cannon, C.P. (2017). Acute myocardial infarction. Lancet 389: 197–210, https://doi.org/10.1016/s0140-6736(16)30677-8.Search in Google Scholar PubMed
Troidl, K., Hammerschick, T., Albarran-Juarez, J., Jung, G., Schierling, W., Tonack, S., Krüger, M., Matuschke, B., Troidl, C., Schaper, W., et al.. (2020). Shear stress-induced mir-143-3p in collateral arteries contributes to outward vessel growth by targeting collagen v-α2. Arterioscler. Thromb. Vasc. Biol. 40: e126–e137, https://doi.org/10.1161/ATVBAHA.120.313316.Search in Google Scholar PubMed
Vaux, D.L. (2011). Apoptogenic factors released from mitochondria. Biochim. Biophys. Acta 1813: 546–550, https://doi.org/10.1016/j.bbamcr.2010.08.002.Search in Google Scholar PubMed
Wang, Q.S., Zhou, J., and Li, X. (2020). Lncrna uca1 protects cardiomyocytes against hypoxia/reoxygenation induced apoptosis through inhibiting mir-143/mdm2/p53 axis. Genomics 112: 574–580, https://doi.org/10.1016/j.ygeno.2019.04.009.Search in Google Scholar PubMed
Wang, S. and Liu, Z. (2021). Inhibition of microrna-143-3p attenuates cerebral ischemia/reperfusion injury by targeting fstl1. Neuromol. Med. 23: 500–510, https://doi.org/10.1007/s12017-021-08650-6.Search in Google Scholar PubMed
Xiong, J., Hu, Y., Liu, Y., and Zeng, X. (2022). Circrna mmu_circ_0000021 regulates microvascular function via the mir-143-3p/npy axis and intracellular calcium following ischemia/reperfusion injury. Cell Death Dis. 8: 315, https://doi.org/10.1038/s41420-022-01108-z.Search in Google Scholar PubMed PubMed Central
Yu, B., Yu, M., Zhang, H., Xie, D., Nie, W., and Shi, K. (2020). Suppression of mir-143-3p contributes to the anti-fibrosis effect of atorvastatin on myocardial tissues via the modulation of smad2 activity. Exp. Mol. Pathol. 112: 104346, https://doi.org/10.1016/j.yexmp.2019.104346.Search in Google Scholar PubMed
Zhou, H., Ma, Q., Zhu, P., Ren, J., Reiter, R.J., and Chen, Y. (2018). Protective role of melatonin in cardiac ischemia-reperfusion injury: from pathogenesis to targeted therapy. J. Pineal Res. 64: e12471, https://doi.org/10.1111/jpi.12471.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/hsz-2022-0334).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Unravelling the genetic links between Parkinson’s disease and lung cancer
- Small-molecule metabolites in SARS-CoV-2 treatment: a comprehensive review
- Research Articles/Short Communications
- Molecular Medicine
- Dynamic regulation of eEF1A1 acetylation affects colorectal carcinogenesis
- New lipophilic organic nitrates: candidates for chronic skin disease therapy
- Cell Biology and Signaling
- Altered population activity and local tuning heterogeneity in auditory cortex of Cacna2d3-deficient mice
- Inhibition of miR-143-3p alleviates myocardial ischemia reperfusion injury via limiting mitochondria-mediated apoptosis
- Proteolysis
- The Mycobacterium tuberculosis prolyl dipeptidyl peptidase cleaves the N-terminal peptide of the immunoprotein CXCL-10
Articles in the same Issue
- Frontmatter
- Reviews
- Unravelling the genetic links between Parkinson’s disease and lung cancer
- Small-molecule metabolites in SARS-CoV-2 treatment: a comprehensive review
- Research Articles/Short Communications
- Molecular Medicine
- Dynamic regulation of eEF1A1 acetylation affects colorectal carcinogenesis
- New lipophilic organic nitrates: candidates for chronic skin disease therapy
- Cell Biology and Signaling
- Altered population activity and local tuning heterogeneity in auditory cortex of Cacna2d3-deficient mice
- Inhibition of miR-143-3p alleviates myocardial ischemia reperfusion injury via limiting mitochondria-mediated apoptosis
- Proteolysis
- The Mycobacterium tuberculosis prolyl dipeptidyl peptidase cleaves the N-terminal peptide of the immunoprotein CXCL-10