Home Life Sciences Inhibition of miR-143-3p alleviates myocardial ischemia reperfusion injury via limiting mitochondria-mediated apoptosis
Article
Licensed
Unlicensed Requires Authentication

Inhibition of miR-143-3p alleviates myocardial ischemia reperfusion injury via limiting mitochondria-mediated apoptosis

  • Chuang-Hong Lu , De-Xin Chen , Kun Dong , Yun-Jiao Wu , Na Na , Hong Wen , Yao-shi Hu , Yuan-Ying Liang , Si-Yi Wu , Bei-You Lin , Feng Huang EMAIL logo and Zhi-Yu Zeng EMAIL logo
Published/Copyright: February 14, 2023

Abstract

MicroRNA (miR)-143-3p is a potential regulatory molecule in myocardial ischemia/reperfusion injury (MI/RI), wherein its expression and pathological effects remains controversial. Thus, a mouse MI/RI and cell hypoxia/reoxygenation (H/R) models were built for clarifying the miR-143-3p’s role in MI/RI. Following myocardial ischemia for 30 min, mice underwent reperfusion for 3, 6, 12 and 24 h. It was found miR-143-3p increased in the ischemic heart tissue over time after reperfusion. Cardiomyocytes transfected with miR-143-3p were more susceptible to apoptosis. Mechanistically, miR-143-3p targeted B cell lymphoma 2 (bcl-2). And miR-143-3p inhibition reduced cardiomyocytes apoptosis upon H/R, whereas it was reversed by a specific bcl-2 inhibitor ABT-737. Of note, miR-143-3p inhibition upregulated bcl-2 with better mitochondrial membrane potential (Δψm), reduced cytoplasmic cytochrome c (cyto-c) and caspase proteins, and minimized infarction area in mice upon I/R. Collectively, inhibition of miR-143-3p might alleviate MI/RI via targeting bcl-2 to limit mitochondria-mediated apoptosis. To our knowledge, this study further clarifies the miR-143-3p’s pathological role in the early stages of MI/RI, and inhibiting miR-143-3p could be an effective treatment for ischemic myocardial disease.


Corresponding authors: Feng Huang and Zhi-Yu Zeng, Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, No.6 Shuangyong Road, Nanning 530021, Guangxi, China, E-mail: ,
Chuang-Hong Lu, De-Xin Chen and Kun Dong contributed equally to this work.

Funding source: Guangdong Medical Science and technology research fund project

Award Identifier / Grant number: A2022115

Award Identifier / Grant number: 81760057

Award Identifier / Grant number: 82070279

Funding source: Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention

Award Identifier / Grant number: 19-245-34

Funding source: Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases

Award Identifier / Grant number: AD17129014

  1. Author contributions: CH conceptualized and wrote the manuscript. DX and YJ built in vivo and in vitro models. YS, YY and SY conducted experimental detection. K collected and analyzed data. N, H and BY revised the manuscript. F and ZY conceptualized, revised and supported the manuscript. All of the authors in this study have read and given approval to the submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (82070279 and 81760057), Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention (19-245-34), Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases (AD17129014), Guangdong Medical Science and technology research fund project (A2022115).

  3. Conflict of interest statement: Authors in this study have no potential conflicts of interest.

References

Al-Salam, S. and Hashmi, S. (2018). Myocardial ischemia reperfusion injury: apoptotic, inflammatory and oxidative stress role of galectin-3. Cell. Physiol. Biochem. 50: 1123–1139, https://doi.org/10.1159/000494539.Search in Google Scholar PubMed

Bock, F.J. and Tait, S.W.G. (2020). Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 21: 85–100, https://doi.org/10.1038/s41580-019-0173-8.Search in Google Scholar PubMed

Bostjancic, E., Zidar, N., Stajer, D., and Glavac, D. (2010). Micrornas mir-1, mir-133a, mir-133b and mir-208 are dysregulated in human myocardial infarction. Cardiology 115: 163–169, https://doi.org/10.1159/000268088.Search in Google Scholar PubMed

Burke, P.J. (2017). Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer 3: 857–870, https://doi.org/10.1016/j.trecan.2017.10.006.Search in Google Scholar PubMed PubMed Central

Caumanns, J.J., van Wijngaarden, A., Kol, A., Meersma, G.J., Jalving, M., Bernards, R., van der Zee, A.G.J., Wisman, G.B.A., and de Jong, S. (2019). Low-dose triple drug combination targeting the pi3k/akt/mtor pathway and the mapk pathway is an effective approach in ovarian clear cell carcinoma. Cancer Lett. 461: 102–111, https://doi.org/10.1016/j.canlet.2019.07.004.Search in Google Scholar PubMed

Chang, L.P., Shi, R., Wang, X.J., and Bao, Y. (2019). Gypenoside a protects ischemia/reperfusion injuries by suppressing mir‐143‐3p level via the activation of ampk/foxo1 pathway. Biofactors 46: 432–444, https://doi.org/10.1002/biof.1601.Search in Google Scholar PubMed

Chen, A., Wen, J.L., Lu, C.H., Lin, B.Y., Xian, S.L., Huang, F., Wu, Y.J., and Zeng, Z.Y. (2020). Inhibition of mir-155-5p attenuates the valvular damage induced by rheumatic heart disease. Int. J. Mol. Med. 45: 429–440, https://doi.org/10.3892/ijmm.2019.4420.Search in Google Scholar PubMed PubMed Central

Chen, C., Hu, L.X., Dong, T., Wang, G.Q., Wang, L.H., Zhou, X.P., Jiang, Y., Murao, K., Lu, S.Q., Chen, J.W., et al.. (2013). Apoptosis and autophagy contribute to gender difference in cardiac ischemia-reperfusion induced injury in rats. Life Sci. 93: 265–270, https://doi.org/10.1016/j.lfs.2013.06.019.Search in Google Scholar PubMed

Chen, C.B., Lu, C.H., He, D.W., Na, N., Wu, Y.J., Luo, Z.C., and Huang, F. (2021a). Inhibition of hmgb1 alleviates myocardial ischemia/reperfusion injury in diabetic mice via suppressing autophagy. Microvasc. Res. 138: 104204, https://doi.org/10.1016/j.mvr.2021.104204.Search in Google Scholar PubMed

Chen, G., Wang, M., Ruan, Z., Zhu, L., and Tang, C. (2021b). Mesenchymal stem cell-derived exosomal mir-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy. Life Sci. 280: 119742, https://doi.org/10.1016/j.lfs.2021.119742.Search in Google Scholar PubMed

Cordes, K.R., Sheehy, N.T., White, M.P., Berry, E.C., Morton, S.U., Muth, A.N., Lee, T.H., Miano, J.M., Ivey, K.N., and Srivastava, D. (2009). Mir-145 and mir-143 regulate smooth muscle cell fate and plasticity. Nature 460: 705–710, https://doi.org/10.1038/nature08195.Search in Google Scholar PubMed PubMed Central

Du, J.K., Cong, B.H., Yu, Q., Wang, H., Wang, L., Wang, C.N., Tang, X.L., Lu, J.Q., Zhu, X.Y., and Ni, X. (2016). Upregulation of microrna-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function. Free Radic. Biol. Med. 96: 406–417, https://doi.org/10.1016/j.freeradbiomed.2016.05.006.Search in Google Scholar PubMed

Fröhlich, G.M., Meier, P., White, S.K., Yellon, D.M., and Hausenloy, D.J. (2013). Myocardial reperfusion injury: looking beyond primary pci. Eur. Heart J. 34: 1714–1722, https://doi.org/10.1093/eurheartj/eht090.Search in Google Scholar PubMed

Gao, S., Ge, L.H., Zhao, Y.M., Li, P., Li, Y.Y., and Zhao, W. (2022). Hsa-mirna-143-3p regulates the odontogenic differentiation of human stem cells from the apical papilla by targeting nfic. Int. Endod. J. 55: 263–274, https://doi.org/10.1111/iej.13666.Search in Google Scholar PubMed

Guo, Z., Zhao, M., Jia, G., Ma, R., and Li, M. (2021). Lncrna part1 alleviated myocardial ischemia/reperfusion injury via suppressing mir-503-5p/birc5 mediated mitochondrial apoptosis. Int. J. Cardiol. 338: 176–184, https://doi.org/10.1016/j.ijcard.2021.05.044.Search in Google Scholar PubMed

Hausenloy, D.J. and Yellon, D.M. (2015). Targeting myocardial reperfusion injury--the search continues. N. Engl. J. Med. 373: 1073–1075, https://doi.org/10.1056/nejme1509718.Search in Google Scholar PubMed

Hergenreider, E., Heydt, S., Tréguer, K., Boettger, T., Horrevoets, A.J., Zeiher, A.M., Scheffer, M.P., Frangakis, A.S., Yin, X., Mayr, M., et al.. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through mirnas. Nat. Cell Biol. 14: 249–256, https://doi.org/10.1038/ncb2441.Search in Google Scholar PubMed

Heusch, G. and Gersh, B., J. (2017). The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur. Heart J. 38: 774–784, https://doi.org/10.1093/eurheartj/ehw224.Search in Google Scholar PubMed

Hong, H., Tao, T., Chen, S., Liang, C., Qiu, Y., Zhou, Y., and Zhang, R. (2017). Microrna-143 promotes cardiac ischemia-mediated mitochondrial impairment by the inhibition of protein kinase cepsilon. Basic Res. Cardiol. 112: 60, https://doi.org/10.1007/s00395-017-0649-7.Search in Google Scholar PubMed

Korshunova, A.Y., Blagonravov, M.L., Neborak, E.V., Syatkin, S.P., Sklifasovskaya, A.P., Semyatov, S.M., and Agostinelli, E. (2021). Bcl2-regulated apoptotic process in myocardial ischemia-reperfusion injury. Int. J. Mol. Med. 47: 23–36, https://doi.org/10.3892/ijmm.2020.4781.Search in Google Scholar PubMed PubMed Central

Krech, J., Tong, G., Wowro, S., Walker, C., Rosenthal, L.M., Berger, F., and Schmitt, K.R.L. (2017). Moderate therapeutic hypothermia induces multimodal protective effects in oxygen-glucose deprivation/reperfusion injured cardiomyocytes. Mitochondrion 35: 1–10, https://doi.org/10.1016/j.mito.2017.04.001.Search in Google Scholar PubMed

Liu, S., He, Y., Shi, J., Liu, L., Ma, H., He, L., and Guo, Y. (2019). Downregulation of mirna-30a enhanced autophagy in osthole-alleviated myocardium ischemia/reperfusion injury. J. Cell. Physiol. 1–10, https://doi.org/10.1002/jcp.28556.Search in Google Scholar PubMed

Makhdoumi, P., Roohbakhsh, A., and Karimi, G. (2016). Micrornas regulate mitochondrial apoptotic pathway in myocardial ischemia-reperfusion-injury. Biomed. Pharmacother. 84: 1635–1644, https://doi.org/10.1016/j.biopha.2016.10.073.Search in Google Scholar PubMed

Martinou, J.C. and Youle, R.J. (2011). Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21: 92–101, https://doi.org/10.1016/j.devcel.2011.06.017.Search in Google Scholar PubMed PubMed Central

Ogawa, K., Noda, A., Ueda, J., Ogata, T., Matsuyama, R., Nishizawa, Y., Qiao, S., Iwata, S., Ito, M., Fujihara, Y., et al.. (2020). Forced expression of mir-143 and -145 in cardiomyocytes induces cardiomyopathy with a reductive redox shift. Cell. Mol. Biol. Lett. 25: 40, https://doi.org/10.1186/s11658-020-00232-x.Search in Google Scholar PubMed PubMed Central

Qian, Y., Teng, Y., Li, Y., Lin, X., Guan, M., Li, Y., Cao, X., and Gao, Y. (2019). Mir-143-3p suppresses the progression of nasal squamous cell carcinoma by targeting bcl-2 and igf1r. Biochem. Biophys. Res. Commun. 518: 492–499, https://doi.org/10.1016/j.bbrc.2019.08.075.Search in Google Scholar PubMed

Reed, G.W., Rossi, J.E., and Cannon, C.P. (2017). Acute myocardial infarction. Lancet 389: 197–210, https://doi.org/10.1016/s0140-6736(16)30677-8.Search in Google Scholar PubMed

Troidl, K., Hammerschick, T., Albarran-Juarez, J., Jung, G., Schierling, W., Tonack, S., Krüger, M., Matuschke, B., Troidl, C., Schaper, W., et al.. (2020). Shear stress-induced mir-143-3p in collateral arteries contributes to outward vessel growth by targeting collagen v-α2. Arterioscler. Thromb. Vasc. Biol. 40: e126–e137, https://doi.org/10.1161/ATVBAHA.120.313316.Search in Google Scholar PubMed

Vaux, D.L. (2011). Apoptogenic factors released from mitochondria. Biochim. Biophys. Acta 1813: 546–550, https://doi.org/10.1016/j.bbamcr.2010.08.002.Search in Google Scholar PubMed

Wang, Q.S., Zhou, J., and Li, X. (2020). Lncrna uca1 protects cardiomyocytes against hypoxia/reoxygenation induced apoptosis through inhibiting mir-143/mdm2/p53 axis. Genomics 112: 574–580, https://doi.org/10.1016/j.ygeno.2019.04.009.Search in Google Scholar PubMed

Wang, S. and Liu, Z. (2021). Inhibition of microrna-143-3p attenuates cerebral ischemia/reperfusion injury by targeting fstl1. Neuromol. Med. 23: 500–510, https://doi.org/10.1007/s12017-021-08650-6.Search in Google Scholar PubMed

Xiong, J., Hu, Y., Liu, Y., and Zeng, X. (2022). Circrna mmu_circ_0000021 regulates microvascular function via the mir-143-3p/npy axis and intracellular calcium following ischemia/reperfusion injury. Cell Death Dis. 8: 315, https://doi.org/10.1038/s41420-022-01108-z.Search in Google Scholar PubMed PubMed Central

Yu, B., Yu, M., Zhang, H., Xie, D., Nie, W., and Shi, K. (2020). Suppression of mir-143-3p contributes to the anti-fibrosis effect of atorvastatin on myocardial tissues via the modulation of smad2 activity. Exp. Mol. Pathol. 112: 104346, https://doi.org/10.1016/j.yexmp.2019.104346.Search in Google Scholar PubMed

Zhou, H., Ma, Q., Zhu, P., Ren, J., Reiter, R.J., and Chen, Y. (2018). Protective role of melatonin in cardiac ischemia-reperfusion injury: from pathogenesis to targeted therapy. J. Pineal Res. 64: e12471, https://doi.org/10.1111/jpi.12471.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/hsz-2022-0334).


Received: 2022-11-26
Accepted: 2023-01-13
Published Online: 2023-02-14
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2022-0334/html
Scroll to top button