Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer deaths worldwide. Understanding the mechanisms responsible for the malignancy of NSCLC cells is important for therapy and drug development. Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. We found that Nodal can trigger the proliferation of NSCLC cells and decrease the sensitivity to doxorubicin (Dox) and cisplatin (CDDP) treatment. Targeted inhibition of Nodal can suppress the proliferation of NSCLC cells. Among the measured cytokines, Nodal can increase the expression of interleukin-6 (IL-6) and vascular endothelial growth factor A (VEGFA) in NSCLC cells. Inhibition of IL-6, while not VEGFA, attenuated Nodal induced cell proliferation, suggesting the essential roles of IL-6 in Nodal induced malignancy of NSCLC cells. Nodal can trigger the phosphorylation, nuclear translocation and transcriptional activities of p65, the key signal transducer of NF-κB. This was due to the fact that Nodal can increase the phosphorylation of IKKβ/IκBα. The inhibitor of IKKβ abolished Nodal induced activation of p65 and expression of IL-6. Collectively, we found that Nodal can increase the proliferation and decrease chemosensitivity of NSCLC cells via regulation of NF-κB/IL-6 signals. It indicated that Nodal might be a potential therapeutic target for NSCLC treatment.
Conflict of interest statement: The authors declare no conflict of interest.
References
Bharti, R., Dey, G., Banerjee, I., Dey, K.K., Parida, S., Kumar, B.N.P., Das, C.K., Pal, I., Mukherjee, M., Misra, M., et al. (2017). Somatostatin receptor targeted liposomes with Diacerein inhibit IL-6 for breast cancer therapy. Cancer Lett. 388, 292–302.10.1016/j.canlet.2016.12.021Suche in Google Scholar
Bharti, R., Dey, G., Das, A.K., and Mandal, M. (2018). Differential expression of IL-6/IL-6R and MAO-A regulates invasion/angiogenesis in breast cancer. Br. J. Cancer 118, 1442–1452.10.1038/s41416-018-0078-xSuche in Google Scholar
Bodenstine, T.M., Chandler, G.S., Seftor, R.E., Seftor, E.A., and Hendrix, M.J. (2016). Plasticity underlies tumor progression: role of Nodal signaling. Cancer Metast. Rev. 35, 21–39.10.1007/s10555-016-9605-5Suche in Google Scholar
Culig, Z. and Puhr, M. (2012). Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol. Cell Endocrinol. 360, 52–58.10.1016/j.mce.2011.05.033Suche in Google Scholar
de Araujo Farias, V., Carrillo-Galvez, A.B., Martin, F., and Anderson, P. (2018). TGF-beta and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev. 43, 25–37.10.1016/j.cytogfr.2018.06.002Suche in Google Scholar
Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., and Chen, Z.J. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361.10.1016/S0092-8674(00)00126-4Suche in Google Scholar
Du, S. and Barcellos-Hoff, M.H. (2013). Tumors as organs: biologically augmenting radiation therapy by inhibiting transforming growth factor beta activity in carcinomas. Semin. Radiat. Oncol. 23, 242–251.10.1016/j.semradonc.2013.05.001Suche in Google Scholar PubMed PubMed Central
Duan, W., Li, R., Ma, J., Lei, J., Xu, Q., Jiang, Z., Nan, L., Li, X., Wang, Z., Huo, X., et al. (2015). Overexpression of Nodal induces a metastatic phenotype in pancreatic cancer cells via the Smad2/3 pathway. Oncotarget 6, 1490–1506.10.18632/oncotarget.2686Suche in Google Scholar PubMed PubMed Central
Gondos, A., Bray, F., Brewster, D.H., Coebergh, J.W., Hakulinen, T., Janssen-Heijnen, M.L., Kurtinaitis, J., Brenner, H., and Group, E.S.W. (2008). Recent trends in cancer survival across Europe between 2000 and 2004: a model-based period analysis from 12 cancer registries. Eur. J. Cancer 44, 1463–1475.10.1016/j.ejca.2008.03.010Suche in Google Scholar PubMed
Gong, W., Sun, B., Sun, H., Zhao, X., Zhang, D., Liu, T., Zhao, N., Gu, Q., Dong, X., and Liu, F. (2017). Nodal signaling activates the Smad2/3 pathway to regulate stem cell-like properties in breast cancer cells. Am. J. Cancer Res. 7, 503–517.10.18632/oncotarget.12161Suche in Google Scholar
Grivennikov, S. and Karin, M. (2008). Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 13, 7–9.10.1016/j.ccr.2007.12.020Suche in Google Scholar PubMed
Guo, Y., Xu, F., Lu, T., Duan, Z., and Zhang, Z. (2012). Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat. Rev. 38, 904–910.10.1016/j.ctrv.2012.04.007Suche in Google Scholar PubMed
Israel, A. (2010). The IKK complex, a central regulator of NF-κB activation. Cold Spring Harb Perspect Biol. 2, a000158.10.1101/cshperspect.a000158Suche in Google Scholar PubMed PubMed Central
Jeon, H.S. and Jen, J. (2010). TGF-beta signaling and the role of inhibitory Smads in non-small cell lung cancer. J. Thorac. Oncol. 5, 417–419.10.1097/JTO.0b013e3181ce3afdSuche in Google Scholar PubMed PubMed Central
Kalyan, A., Carneiro, B.A., Chandra, S., Kaplan, J., Chae, Y.K., Matsangou, M., Hendrix, M.J.C., and Giles, F. (2017). Nodal signaling as a developmental therapeutics target in oncology. Mol. Cancer Ther. 16, 787–792.10.1158/1535-7163.MCT-16-0215Suche in Google Scholar PubMed
Kim, T., Yang, S.J., Hwang, D., Song, J., Kim, M., Kyum Kim, S., Kang, K., Ahn, J., Lee, D., Kim, M.Y., et al. (2015). A basal-like breast cancer-specific role for SRF-IL6 in YAP-induced cancer stemness. Nat. Commun. 6, 10186.10.1038/ncomms10186Suche in Google Scholar PubMed PubMed Central
Lawrence, M.G., Margaryan, N.V., Loessner, D., Collins, A., Kerr, K.M., Turner, M., Seftor, E.A., Stephens, C.R., Lai, J., BioResource, A.P.C., et al. (2011). Reactivation of embryonic nodal signaling is associated with tumor progression and promotes the growth of prostate cancer cells. Prostate 71, 1198–1209.10.1002/pros.21335Suche in Google Scholar PubMed PubMed Central
Lee, C.C., Jan, H.J., Lai, J.H., Ma, H.I., Hueng, D.Y., Lee, Y.C., Cheng, Y.Y., Liu, L.W., Wei, H.W., and Lee, H.M. (2010). Nodal promotes growth and invasion in human gliomas. Oncogene 29, 3110–3123.10.1038/onc.2010.55Suche in Google Scholar PubMed
Liao, C., Yu, Z., Guo, W., Liu, Q., Wu, Y., Li, Y., and Bai, L. (2014). Prognostic value of circulating inflammatory factors in non-small cell lung cancer: a systematic review and meta-analysis. Cancer Biomark. 14, 469–481.10.3233/CBM-140423Suche in Google Scholar PubMed
Mahapatra, L., Andruska, N., Mao, C., Le, J., and Shapiro, D.J. (2017). A novel IMP1 inhibitor, BTYNB, targets c-Myc and inhibits melanoma and ovarian cancer cell proliferation. Transl. Oncol. 10, 818–827.10.1016/j.tranon.2017.07.008Suche in Google Scholar PubMed PubMed Central
Mercurio, F., Zhu, H., Murray, B.W., Shevchenko, A., Bennett, B.L., Li, J., Young, D.B., Barbosa, M., Mann, M., Manning, A., et al. (1997). IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278, 860–866.10.1126/science.278.5339.860Suche in Google Scholar PubMed
Park, J.-I., Lee, M.-G., Cho, K., Park, B.-J., Chae, K.-S., Byun, D.-S., Ryu, B.-K., Park, Y.-K., and Chi, S.-G. (2003). Transforming growth factor-β1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-κB, JNK, and Ras signaling pathways. Oncogene 22, 4314–4332.10.1038/sj.onc.1206478Suche in Google Scholar PubMed
Pauklin, S. and Vallier, L. (2015). Activin/Nodal signalling in stem cells. Development 142, 607–619.10.1242/dev.091769Suche in Google Scholar PubMed
Paule, B., Terry, S., Kheuang, L., Soyeux, P., Vacherot, F., and de la Taille, A. (2007). The NF-κB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches? World J. Urol. 25, 477–489.10.1007/s00345-007-0175-6Suche in Google Scholar PubMed
Perkins, N.D. (2007). Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49–62.10.1038/nrm2083Suche in Google Scholar PubMed
Perlikos, F., Harrington, K.J., and Syrigos, K.N. (2013). Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Crit. Rev. Oncol. Hematol. 87, 1–11.10.1016/j.critrevonc.2012.12.007Suche in Google Scholar PubMed
Qi, Y.F., Wu, L., Li, Z.Q., Wu, M.L., Wang, H.F., Chan, K.Y., Lu, L.L., Cai, S.H., Wang, H.S., and Du, J. (2016). Nodal signaling modulates the expression of Oct-4 via nuclear translocation of β-catenin in lung and prostate cancer cells. Arch. Biochem. Biophys. 608, 34–41.10.1016/j.abb.2016.07.003Suche in Google Scholar PubMed
Quail, D.F., Siegers, G.M., Jewer, M., and Postovit, L.M. (2013). Nodal signalling in embryogenesis and tumourigenesis. Int. J. Biochem. Cell Biol. 45, 885–898.10.1016/j.biocel.2012.12.021Suche in Google Scholar PubMed
Quail, D.F., Walsh, L.A., Zhang, G., Findlay, S.D., Moreno, J., Fung, L., Ablack, A., Lewis, J.D., Done, S.J., Hess, D.A., et al. (2012a). Embryonic protein nodal promotes breast cancer vascularization. Cancer Res. 72, 3851–3863.10.1158/0008-5472.CAN-11-3951Suche in Google Scholar PubMed
Quail, D.F., Zhang, G., Walsh, L.A., Siegers, G.M., Dieters-Castator, D.Z., Findlay, S.D., Broughton, H., Putman, D.M., Hess, D.A., and Postovit, L.M. (2012b). Embryonic morphogen nodal promotes breast cancer growth and progression. PLoS One 7, e48237.10.1371/journal.pone.0048237Suche in Google Scholar PubMed PubMed Central
Reckamp, K.L. (2015). Advances in immunotherapy for non-small cell lung cancer. Clin. Adv. Hematol. Oncol. 13, 847–853.Suche in Google Scholar
Sharif, G.M., Schmidt, M.O., Yi, C., Hu, Z., Haddad, B.R., Glasgow, E., Riegel, A.T., and Wellstein, A. (2015). Cell growth density modulates cancer cell vascular invasion via Hippo pathway activity and CXCR2 signaling. Oncogene 34, 5879–5889.10.1038/onc.2015.44Suche in Google Scholar PubMed PubMed Central
Strizzi, L., Hardy, K.M., Kirsammer, G.T., Gerami, P., and Hendrix, M.J. (2011). Embryonic signaling in melanoma: potential for diagnosis and therapy. Lab Invest. 91, 819–824.10.1038/labinvest.2011.63Suche in Google Scholar PubMed PubMed Central
Strizzi, L., Postovit, L.M., Margaryan, N.V., Lipavsky, A., Gadiot, J., Blank, C., Seftor, R.E., Seftor, E.A., and Hendrix, M.J. (2009). Nodal as a biomarker for melanoma progression and a new therapeutic target for clinical intervention. Expert Rev. Dermatol. 4, 67–78.10.1586/17469872.4.1.67Suche in Google Scholar PubMed PubMed Central
Tian, M., Neil, J.R., and Schiemann, W.P. (2011). Transforming growth factor-β and the hallmarks of cancer. Cell Signal 23, 951–962.10.1016/j.cellsig.2010.10.015Suche in Google Scholar PubMed PubMed Central
Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J., and Chen, Z.J.J. (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351.10.1038/35085597Suche in Google Scholar PubMed
Watabe, T. and Miyazono, K. (2009). Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res 19, 103–115.10.1038/cr.2008.323Suche in Google Scholar PubMed
Wood, S.L., Pernemalm, M., Crosbie, P.A., and Whetton, A.D. (2015). Molecular histology of lung cancer: from targets to treatments. Cancer Treat Rev. 41, 361–375.10.1016/j.ctrv.2015.02.008Suche in Google Scholar PubMed
Zarogoulidis, P., Yarmus, L., Darwiche, K., Walter, R., Huang, H., Li, Z., Zaric, B., Tsakiridis, K., and Zarogoulidis, K. (2013). Interleukin-6 cytokine: a multifunctional glycoprotein for cancer. Immunome Res. 9, 16535.10.4172/1745-7580.1000062Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Unforgettable force – crosstalk and memory of mechanosensitive structures
- Differential expression of DLG1 as a common trait in different human diseases: an encouraging issue in molecular pathology
- The effects of oxidative stress on the development of atherosclerosis
- Research Articles/Short Communications
- Protein Structure and Function
- Kinetically selective and potent inhibitors of HDAC8
- Assay of β-glucosidase 2 (GBA2) activity using lithocholic acid β-3-O-glucoside substrate for cultured fibroblasts and glucosylceramide for brain tissue
- Cell Biology and Signaling
- Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model
- Nm23-H1 inhibits hypoxia induced epithelial-mesenchymal transition and stemness in non-small cell lung cancer cells
- Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals
- MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions
- Proteolysis
- Metalloprotease inhibitor profiles of human ADAM8 in vitro and in cell-based assays
Artikel in diesem Heft
- Frontmatter
- Reviews
- Unforgettable force – crosstalk and memory of mechanosensitive structures
- Differential expression of DLG1 as a common trait in different human diseases: an encouraging issue in molecular pathology
- The effects of oxidative stress on the development of atherosclerosis
- Research Articles/Short Communications
- Protein Structure and Function
- Kinetically selective and potent inhibitors of HDAC8
- Assay of β-glucosidase 2 (GBA2) activity using lithocholic acid β-3-O-glucoside substrate for cultured fibroblasts and glucosylceramide for brain tissue
- Cell Biology and Signaling
- Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model
- Nm23-H1 inhibits hypoxia induced epithelial-mesenchymal transition and stemness in non-small cell lung cancer cells
- Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals
- MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions
- Proteolysis
- Metalloprotease inhibitor profiles of human ADAM8 in vitro and in cell-based assays