Startseite Lebenswissenschaften Novel approach to quorum quenching: rational design of antibacterials in combination with hexahistidine-tagged organophosphorus hydrolase
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Novel approach to quorum quenching: rational design of antibacterials in combination with hexahistidine-tagged organophosphorus hydrolase

  • Aysel Aslanli ORCID logo , Ilya Lyagin und Elena Efremenko EMAIL logo
Veröffentlicht/Copyright: 19. Juni 2018

Abstract

N-acyl homoserine lactones (AHLs) are quorum sensing (QS) signal molecules used by most Gram-negative pathogenic bacteria. In this article the lactonase activity of the preparations based on hexahistidine-tagged organophosphorus hydrolase (His6-OPH) towards AHLs was studied. Initially, three of the most interesting β-lactam antibiotics were selected from seven that were trialed during molecular docking to His6-OPH. Combinations of antibiotics (meropenem, imipenem, ceftriaxone) and His6-OPH taken in the native form or in the form of non-covalent enzyme-polyelectrolyte complexes (EPCs) with poly(glutamic acid) or poly(aspartic acid) were obtained and investigated. The lactonase activity of the preparations was investigated under different physical-chemical conditions in the hydrolysis of AHLs [N-butyryl-D,L-homoserine lactone, N-(3-oxooctanoyl)-D,L-homoserine lactone, N-(3-oxododecanoyl)-L-homoserine lactone]. An increased efficiency of catalytic action and stability of the lactonase activity of His6-OPH was shown for its complexes with antibiotics and was confirmed in trials with bacterial strains. The broadening of the catalytic action of the enzyme against AHLs was revealed in the presence of the meropenem. Results of molecular docking of AHLs to the surface of the His6-OPH dimer in the presence of antibiotics allowed proposing the mechanism of such interference based on a steric repulsion of the carbon chain of hydrolyzed AHLs by the antibiotics bounded to the enzyme surface.

Award Identifier / Grant number: 16-14-00061

Funding statement: This work was supported by the Russian Science Foundation (Funder Id: 10.13039/501100006769, Grant No. 16-14-00061).

References

Allouche, A.R. (2011). Gabedit – a graphical user interface for computational chemistry softwares. J. Comput. Chem. 32, 174–182.10.1002/jcc.21600Suche in Google Scholar PubMed

Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041.10.1073/pnas.181342398Suche in Google Scholar PubMed PubMed Central

Deep, A., Chaudhary, U., and Gupta, V. (2011). Quorum sensing and bacterial pathogenicity: from molecules to disease. J. Lab. Physicians 3, 4–11.10.4103/0974-2727.78553Suche in Google Scholar PubMed PubMed Central

Dickschat, J.S. (2010). Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27, 343–369.10.1039/b804469bSuche in Google Scholar PubMed

Dolinsky, T.J., Czodrowski, P., Li, H., Nielsen, J.E., Jensen, J.H., Klebe, G., and Baker, N.A. (2007). PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525.10.1093/nar/gkm276Suche in Google Scholar PubMed PubMed Central

Efremenko, E.N., Azizov, R.E., Makhlis, T.A., Abbasov, V.M., and Varfolomeev, S.D. (2005a). Determination of minimal concentrations of biocorrosion inhibitors by a bioluminescence method. Appl. Biochem. Microbiol. 41, 377–381.10.1007/s10438-005-0064-ySuche in Google Scholar

Efremenko, E.N., Votchitseva, Y.A., Aliev, T.K., and Varfolomeev, S.D. (2005b). Recombinant plasmid DNA pTES-HIS-OPH and producer of oligohistidine-containing organophosphate hydrolase. RU Patent 2255975, bulletin 19.Suche in Google Scholar

Efremenko, E., Votchitseva, Y., Plieva, F., Galaev, I., and Mattiasson, B. (2006). Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography. Appl. Microbiol. Biotechnol. 70, 558–563.10.1007/s00253-005-0103-xSuche in Google Scholar PubMed

Efremenko, E.N., Senko, O.V., Aleskerova, L.E., Alenina, K.A., Mazhul, M.M., and Ismailov, A.D. (2014). Biosensors based on the luminous bacteria Photobaterium phosphoreum immobilized in polyvinyl alcohol cryogel for the monitoring of ecotoxicants. Appl. Biochem. Microbiol. 50, 477–482.10.1134/S0003683814050032Suche in Google Scholar

Efremenko, E.N., Lyagin, I.V., Klyachko, N.L., Bronich, T., Zavyalova, N.V., Jiang, Y., and Kabanov, A.V. (2017). A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins. J. Control. Release 247, 175–181.10.1016/j.jconrel.2016.12.037Suche in Google Scholar PubMed

Freeman, L., Buisson, M., Tarbouriech, N., van der Heyden, A., Labbé, P., and Burmeister, W.P. (2009). The flexible motif V of Epstein-Barr virus deoxyuridine 5′-triphosphate pyrophosphatase is essential for catalysis. J. Biol. Chem. 284, 25280–25289.10.1074/jbc.M109.019315Suche in Google Scholar PubMed PubMed Central

Ismayilov, I.T., Stepanov, N.A., Efremenko, E.N., and Abbasov, V.M. (2015). Evaluation of biocidal properties of vegetable oil-based corrosion inhibitors using bioluminescent enzymatic method. Moscow Univ. Chem. Bull. 70, 197–201.10.3103/S0027131415040033Suche in Google Scholar

Kalia, V.C., Raju, S.C., and Purohit, H.J. (2011). Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and-lactonase. Open Microbiol. J. 5, 1–13.10.2174/1874285801105010001Suche in Google Scholar PubMed PubMed Central

LaSarre, B. and Federle, M.J. (2013). Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev. 77, 73–111.10.1128/MMBR.00046-12Suche in Google Scholar PubMed PubMed Central

Liu, C.F., Liu, D., Momb, J., Thomas, P.W., Lajoie, A., Petsko, G.A., Fast, W., and Ringe, D. (2013). A phenylalanine clamp controls substrate specificity in the quorum-quenching metallo-γ-lactonase from Bacillus thurigiensis. Biochemistry 52, 1603–1610.10.1021/bi400050jSuche in Google Scholar PubMed PubMed Central

Lyagin, I.V. and Efremenko, E.N. (2018). Biomolecular engineering of biocatalysts hydrolyzing neurotoxic organophosphates. Biochimie 144, 115–121.10.1016/j.biochi.2017.10.023Suche in Google Scholar PubMed

Maslova, O., Aslanli, A., Stepanov, N., Lyagin, I., and Efremenko, E. (2017a). Catalytic characteristics of new antibacterials based on hexahistidine-containing organophosphorus hydrolase. Catalysts 7, 271.10.3390/catal7090271Suche in Google Scholar

Maslova, O.V., Senko, O.V., Stepanov, N.A., Aslanli, A.G., and Efremenko, E.N. (2017b). His6-OPH and its stabilized forms combating quorum sensing molecules of Gram-negative bacteria in combination with antibiotics. Jundishapur J. Nat. Pharm. Prod. 12, e63649.10.5812/jjnpp.63649Suche in Google Scholar

Momb, J., Wang, C., Liu, D., Thomas, P.W., Petsko, G.A., Guo, H., Ringe, D., and Fast, W. (2008). Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 2. Substrate modeling and active site mutations. Biochemistry 47, 7715–7725.10.1021/bi8003704Suche in Google Scholar PubMed PubMed Central

Morohoshi, T., Tominaga, Y., Someya, N., and Ikeda, T. (2015). Characterization of a novel thermostable N-acylhomoserine lactonase from the thermophilic bacterium Thermaerobacter marianensis. J. Biosci. Bioeng. 120, 1–5.10.1016/j.jbiosc.2014.11.014Suche in Google Scholar PubMed

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 16, 2785–2791.10.1002/jcc.21256Suche in Google Scholar PubMed PubMed Central

Papenfort, K. and Bassler, B.L. (2016). Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588.10.1038/nrmicro.2016.89Suche in Google Scholar PubMed PubMed Central

Rajesh, P.S. and Rai, V.R. (2015). Purification and antibiofilm activity of AHL-lactonase from endophytic Enterobacter aerogenes VT66. Int. J. Biol. Macromol. 81, 1046–1052.10.1016/j.ijbiomac.2015.09.048Suche in Google Scholar PubMed

Schleibinger, M., Steinbach, C.L., Töpper, C., Kratzer, A., Liebchen, U., Kees, F., Salzberger, B., and Kees, M.G. (2015). Protein binding characteristics and pharmacokinetics of ceftriaxone in intensive care unit patients. Br. J. Clin. Pharmacol. 80, 525–533.10.1111/bcp.12636Suche in Google Scholar PubMed PubMed Central

Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., et al. (1993). General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363.10.1002/jcc.540141112Suche in Google Scholar

Sirotkina, M. and Efremenko, E.N. (2014). Rhodococcus lactonase with organophosphate hydrolase (OPH) activity and His6-tagged OPH with lactonase activity: evolutionary proximity of the enzymes and new possibilities in their application. Appl. Microbiol. Biotechnol. 98, 2647–2656.10.1007/s00253-013-5233-ySuche in Google Scholar PubMed

Sunder, A.V., Utari, P.D., Ramasamy, S., van Merkerk, R., Quax, W., and Pundle, A. (2016). Penicillin V acylases from Gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 101, 2383–2395.10.1007/s00253-016-8031-5Suche in Google Scholar PubMed

Trott, O. and Olson, A.J. (2010). AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461.10.1002/jcc.21334Suche in Google Scholar

Truchado, P., Gil-Izquierdo, A., Tomás-Barberán, F., and Allende, A. (2009). Inhibition by chestnut honey of N-acyl-L-homoserine lactones and biofilm formation in Erwinia carotovora, Yersinia enterocolitica, and Aeromonas hydrophila. J. Agric. Food Chem. 57, 11186–11193.10.1021/jf9029139Suche in Google Scholar PubMed

Votchitseva, Y.A., Efremenko, E.N., Aliev, T.K., and Varfolomeyev, S.D. (2006). Properties of hexahistidine-tagged organophosphate hydrolase. Biochemistry (Moscow) 71, 167–172.10.1134/S0006297906020088Suche in Google Scholar PubMed

Wang, L.H., Weng, L.X., Dong, Y.H., and Zhang, L.H. (2004). Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL lactonase). J. Biol. Chem. 279, 13645–13651.10.1074/jbc.M311194200Suche in Google Scholar PubMed

Wang, W.Z., Morohoshi, T., Someya, N., and Ikeda, T. (2012). AidC, a novel N-acyl homoserine lactonase from the potato root-associated Cytophaga-Flavobacteria-Bacteroides (CFB) group bacterium Chryseobacterium sp. strain StRB126. Appl. Environ. Microbiol. 78, 7985–7992.10.1128/AEM.02188-12Suche in Google Scholar PubMed PubMed Central

Williams, P. and Cámara, M. (2009). Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 12, 182–191.10.1016/j.mib.2009.01.005Suche in Google Scholar PubMed

Winson, M.K., Swift, S., Fish, L., Throup, J.P., Jørgensen, F., Chhabra, S.R., Bycroft, B.W., Williams, P., and Stewart, G.S.A.B. (1998). Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol. Lett. 163, 185–192.10.1111/j.1574-6968.1998.tb13044.xSuche in Google Scholar PubMed

Wong, G., Briscoe, S., Adnan, S., McWhinney, B., Ungerer, J., Lipman, J., and Roberts, J.A. (2013). Protein binding of β-lactam antibiotics in critically ill patients: can we successfully predict unbound concentrations? Antimicrob. Agents Chemother. 57, 6165–6170.10.1128/AAC.00951-13Suche in Google Scholar PubMed PubMed Central

Wong, G., Farkas, A., Sussman, R., Daroczi, G., Hope, W.W., Lipman, J., and Roberts, J.A. (2015). Comparison of the accuracy and precision of pharmacokinetic equations to predict free meropenem concentrations in critically ill patients. Antimicrob. Agents Chemother. 59, 1411–1417.10.1128/AAC.04001-14Suche in Google Scholar PubMed PubMed Central


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0162).


Received: 2018-02-19
Accepted: 2018-05-02
Published Online: 2018-06-19
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0162/html
Button zum nach oben scrollen