Startseite Lebenswissenschaften Insulin-like signaling within and beyond metazoans
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Insulin-like signaling within and beyond metazoans

  • Valerio Vitali , Florian Horn und Francesco Catania EMAIL logo
Veröffentlicht/Copyright: 19. Juni 2018

Abstract

Insulin signaling is pivotal in controlling animals’ lifespan and responses to environmental changes and, when altered, it may lead to pathogenic states. Despite its importance and relevance for biomedical research, insulin’s mechanism of action and the full range of its pathophysiological effects remain incompletely understood. Likewise, the evolutionary origin of insulin and its associated signaling components are unclear. Notwithstanding the common view that insulin signaling originated within metazoans, experimental evidence from non-metazoans suggest a more widespread distribution across eukaryotes. Here, we summarize this evidence. Furthermore, we put forward an evolutionary account that reconciles seemingly contradictory results in the literature.

Award Identifier / Grant number: 281125614/GRK2220

Funding statement: The authors wish to thank Rebecca Hagen for helpful discussions and insightful feedback on the final draft of the manuscript. This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 281125614/GRK2220.

References

Akerfelt, M., Morimoto, R.I., and Sistonen, L. (2010). Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545–555.10.1038/nrm2938Suche in Google Scholar

Barbieri, M., Bonafe, M., Franceschi, C., and Paolisso, G. (2003). Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am. J. Physiol. Endocrinol. Metab. 285, E1064–E1071.10.1152/ajpendo.00296.2003Suche in Google Scholar

Bechtel, T.J. and Weerapana, E. (2017). From structure to redox: the diverse functional roles of disulfides and implications in disease. Proteomics 17, 1600391.10.1002/pmic.201600391Suche in Google Scholar

Canto, C. and Auwerx, J. (2009). Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 20, 325–331.10.1016/j.tem.2009.03.008Suche in Google Scholar

Christensen, S.T. (1993). Insulin rescues the unicellular eukaryote Tetrahymena from dying in a complete, synthetic nutrient medium. Cell Biol. Int. 17, 833–837.10.1006/cbir.1993.1145Suche in Google Scholar

Christensen, S.T., Kemp, K., Quie, H., and Rasmussen, L. (1996). Cell death, survival and proliferation in Tetrahymena thermophila. Effects of insulin, sodium nitroprusside, 8-bromo cyclic GMP, NG-methyl-L-arginine and methylene blue. Cell Biol. Int. 20, 653–666.10.1006/cbir.1996.0087Suche in Google Scholar

Christensen, S.T., Guerra, C.F., Awan, A., Wheatley, D.N., and Satir, P. (2003). Insulin receptor-like proteins in Tetrahymena thermophila ciliary membranes. Curr. Biol. 13, R50–R52.10.1016/S0960-9822(02)01425-2Suche in Google Scholar

Christopher, G.K. and Sundermann, C.A. (1995a). Effect of long-term insulin exposure on insulin binding in Tetrahymena pyriformis. Tissue Cell 27, 585–589.10.1016/S0040-8166(05)80068-0Suche in Google Scholar

Christopher, G.K. and Sundermann, C.A. (1995b). Isolation and partial characterization of the insulin binding sites of Tetrahymena pyriformis. Biochem. Biophys. Res. Commun. 212, 515–523.10.1006/bbrc.1995.2000Suche in Google Scholar

Christopher, G.K. and Sundermann, C.A. (1996). Intracellular insulin binding in Tetrahymena pyriformis. Tissue Cell 28, 427–437.10.1016/S0040-8166(96)80028-0Suche in Google Scholar

Collier, E., Watkinson, A., Cleland, C.F., and Roth, J. (1987). Partial purification and characterization of an insulin-like material from spinach and Lemna gibba G3. J. Biol. Chem. 262, 6238–6247.10.1016/S0021-9258(18)45561-5Suche in Google Scholar

Csaba, G. (2012). The hormonal system of the unicellular Tetrahymena: a review with evolutionary aspects. Acta Microbiol. Immunol. Hung. 59, 131–156.10.1556/amicr.59.2012.2.1Suche in Google Scholar PubMed

Csaba, G. and Lantos, T. (1975). Effect of insulin on the glucose uptake of protozoa. Experientia 31, 1097–1098.10.1007/BF02326980Suche in Google Scholar PubMed

Daub, H., Wallasch, C., Lankenau, A., Herrlich, A., and Ullrich, A. (1997). Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 16, 7032–7044.10.1093/emboj/16.23.7032Suche in Google Scholar PubMed PubMed Central

de Mendoza, A., Sebe-Pedros, A., and Ruiz-Trillo, I. (2014). The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol. Evol. 6, 606–619.10.1093/gbe/evu038Suche in Google Scholar PubMed PubMed Central

Duret, L., Guex, N., Peitsch, M.C., and Bairoch, A. (1998). New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Res. 8, 348–353.10.1101/gr.8.4.348Suche in Google Scholar PubMed

Eisen, J.A., Coyne, R.S., Wu, M., Wu, D., Thiagarajan, M., Wortman, J.R., Badger, J.H., Ren, Q., Amedeo, P., Jones, K.M., et al. (2006). Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 4, e286.10.1371/journal.pbio.0040286Suche in Google Scholar PubMed PubMed Central

Flatt, T. and Heyland, A. (2011). Mechanisms of Life History Evolution. The Genetics and Physiology of Life History Traits and Trade-Offs (Oxford, UK: Oxford University Press).10.1093/acprof:oso/9780199568765.001.0001Suche in Google Scholar

Fontana, L., Partridge, L., and Longo, V.D. (2010). Extending healthy life span – from yeast to humans. Science 328, 321–326.10.1126/science.1172539Suche in Google Scholar PubMed PubMed Central

Garcia Flores, C., Aguilar, R., Reyes de la Cruz, H., Albores, M., and Sanchez de Jimenez, E. (2001). A maize insulin-like growth factor signals to a transduction pathway that regulates protein synthesis in maize. Biochem. J. 358, 95–100.10.1042/bj3580095Suche in Google Scholar

Hegyesi, H. and Csaba, G. (1997). Time- and concentration-dependence of the growth-promoting activity of insulin and histamine in Tetrahymena. Application of the MTT-method for the determination of cell proliferation in a protozoan model. Cell Biol. Int. 21, 289–293.10.1006/cbir.1997.0146Suche in Google Scholar

Ivell, R. and Einspanier, A. (2002). Relaxin peptides are new global players. Trends Endocrinol. Metab. 13, 343–348.10.1016/S1043-2760(02)00664-1Suche in Google Scholar

Kohidai, L., Barsony, J., Roth, J., and Marx, S.J. (1992). Rapid effects of insulin on cyclic GMP location in an intact protozoan. Experientia 48, 476–481.10.1007/BF01928167Suche in Google Scholar

Komatsu, S., Koshio, O., and Hirano, H. (1994). Protein kinase activity and insulin-binding activity in plant basic 7S globulin. Biosci. Biotechnol. Biochem. 58, 1705–1706.10.1271/bbb.58.1705Suche in Google Scholar

Kovacs, P. and Csaba, G. (1990). Evidence of the receptor nature of the binding sites induced in Tetrahymena by insulin treatment. A quantitative cytofluorimetric technique for the study of binding kinetics. Cell Biochem. Funct. 8, 49–56.10.1002/cbf.290080108Suche in Google Scholar

Kovacs, P., Lovas, G., and Csaba, G. (1994). Influence of insulin on the movement of Tetrahymena pyriformis. Hormonal imprinting alters the velocity. Comp. Biochem. Physiol. A Physiol. 107, 375–379.10.1016/0300-9629(94)90395-6Suche in Google Scholar

Lazar, D.F., Knez, J.J., Medof, M.E., Cuatrecasas, P., and Saltiel, A.R. (1994). Stimulation of glycogen synthesis by insulin in human erythroleukemia cells requires the synthesis of glycosyl-phosphatidylinositol. Proc. Natl. Acad. Sci. USA 91, 9665–9669.10.1073/pnas.91.21.9665Suche in Google Scholar PubMed PubMed Central

Leick, V., Bog-Hansen, T.C., and Juhl, H.A. (2001). Insulin/FGF-binding ciliary membrane glycoprotein from Tetrahymena. J. Membr. Biol. 181, 47–53.10.1007/s0023200100064Suche in Google Scholar PubMed

Le Roith, D., Shiloach, J., Roth, J., and Lesniak, M.A. (1980). Evolutionary origins of vertebrate hormones: substances similar to mammalian insulins are native to unicellular eukaryotes. Proc. Natl. Acad. Sci. USA 77, 6184–6188.10.1073/pnas.77.10.6184Suche in Google Scholar PubMed PubMed Central

Muller, G., Rouveyre, N., Crecelius, A., and Bandlow, W. (1998a). Insulin signaling in the yeast Saccharomyces cerevisiae. 1. Stimulation of glucose metabolism and Snf1 kinase by human insulin. Biochemistry 37, 8683–8695.10.1021/bi972071pSuche in Google Scholar PubMed

Muller, G., Rouveyre, N., Upshon, C., and Bandlow, W. (1998b). Insulin signaling in the yeast Saccharomyces cerevisiae. 3. Induction of protein phosphorylation by human insulin. Biochemistry 37, 8705–8713.10.1021/bi980102qSuche in Google Scholar PubMed

Muller, G., Grey, S., Jung, C., and Bandlow, W. (2000). Insulin-like signaling in yeast: modulation of protein phosphatase 2A, protein kinase A, cAMP-specific phosphodiesterase, and glycosyl-phosphatidylinositol-specific phospholipase C activities. Biochemistry 39, 1475–1488.10.1021/bi9920432Suche in Google Scholar PubMed

Pace, A.M., Faure, M., and Bourne, H.R. (1995). Gi2-mediated activation of the MAP kinase cascade. Mol. Biol. Cell 6, 1685–1695.10.1091/mbc.6.12.1685Suche in Google Scholar PubMed PubMed Central

Postnikoff, S.D.L., Malo, M.E., Wong, B., and Harkness, T.A.A. (2012). The yeast forkhead transcription factors Fkh1 and Fkh2 regulate lifespan and stress response together with the anaphase-promoting complex. PLoS Genetics 8, e1002583.10.1371/journal.pgen.1002583Suche in Google Scholar PubMed PubMed Central

Rodriguez-Lopez, C.D., Rodriguez-Romero, A., Aguilar, R., and de Jimenez, E.S. (2011). Biochemical characterization of a new maize (Zea mays L.) peptide growth factor. Protein Pept. Lett. 18, 84–91.10.2174/092986611794328636Suche in Google Scholar PubMed

Sevier, C.S. and Kaiser, C.A. (2002). Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol. 3, 836–847.10.1038/nrm954Suche in Google Scholar PubMed

Shpakov, A.O., Derkach, K.V., Uspenskaia, Z.I., Shpakova, E.A., Kuznetsova, L.A., Plesneva, S.A., and Pertseva, M.N. (2004). Regulation of the adenylate cyclase signaling system in cultured Dileptus anser and Tetrahymena pyriformis by insulin peptide superfamily. Zh. Evol. Biokhim. Fiziol. 40, 290–297.10.1023/B:JOEY.0000046532.94976.70Suche in Google Scholar

Skorokhod, A., Gamulin, V., Gundacker, D., Kavsan, V., Muller, I.M., and Muller, W.E. (1999). Origin of insulin receptor-like tyrosine kinases in marine sponges. Biol. Bull 197, 198–206.10.2307/1542615Suche in Google Scholar PubMed

Stretton, A.O. (2002). The first sequence. Fred Sanger and insulin. Genetics 162, 527–532.10.1093/genetics/162.2.527Suche in Google Scholar

Vihervaara, A. and Sistonen, L. (2014). HSF1 at a glance. J. Cell Sci. 127, 261–266.10.1242/jcs.132605Suche in Google Scholar PubMed

Wang, M., Wang, Q., Wang, Z., Wang, Q., Zhang, X., and Pan, Y. (2013). The molecular evolutionary patterns of the insulin/FOXO signaling pathway. Evol. Bioinform. Online 9, 1–16.10.4137/EBO.S10539Suche in Google Scholar PubMed PubMed Central

Watanabe, Y., Barbashov, S.F., Komatsu, S., Hemmings, A.M., Miyagi, M., Tsunasawa, S., and Hirano, H. (1994). A peptide that stimulates phosphorylation of the plant insulin-binding protein. Isolation, primary structure and cDNA cloning. Eur. J. Biochem. 224, 167–172.10.1111/j.1432-1033.1994.tb20008.xSuche in Google Scholar PubMed

Wong, J.W., Ho, S.Y., and Hogg, P.J. (2011). Disulfide bond acquisition through eukaryotic protein evolution. Mol. Biol. Evol. 28, 327–334.10.1093/molbev/msq194Suche in Google Scholar PubMed

Yamazaki, T., Takaoka, M., Katoh, E., Hanada, K., Sakita, M., Sakata, K., Nishiuchi, Y., and Hirano, H. (2003). A possible physiological function and the tertiary structure of a 4-kDa peptide in legumes. Eur. J. Biochem. 270, 1269–1276.10.1046/j.1432-1033.2003.03489.xSuche in Google Scholar PubMed

Yoshizawa, T., Shimizu, T., Yamabe, M., Taichi, M., Nishiuchi, Y., Shichijo, N., Unzai, S., Hirano, H., Sato, M., and Hashimoto, H. (2011). Crystal structure of basic 7S globulin, a xyloglucan-specific endo-β-1,4-glucanase inhibitor protein-like protein from soybean lacking inhibitory activity against endo-β-glucanase. FEBS J. 278, 1944–1954.10.1111/j.1742-4658.2011.08111.xSuche in Google Scholar PubMed

Zheng, H., Worrall, C., Shen, H., Issad, T., Seregard, S., Girnita, A., and Girnita, L. (2012). Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor. Proc. Natl. Acad. Sci. USA 109, 7055–7060.10.1073/pnas.1118359109Suche in Google Scholar PubMed PubMed Central

Received: 2018-01-23
Accepted: 2018-04-04
Published Online: 2018-06-19
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0135/html
Button zum nach oben scrollen