Abstract
The formation of new blood vessels from pre-existing vasculature, the process known as angiogenesis, is highly regulated by pro- and anti-angiogenic signaling molecules including growth factors and proteases. As an endothelial cell-surface co-receptor for plasminogen and tissue plasminogen activator, the annexin A2 (ANXA2) complex accelerates plasmin generation and facilitates fibrinolysis. Plasmin can subsequently activate a downstream proteolytic cascade involving multiple matrix metalloproteinases. Thus, in addition to maintaining blood vessel patency, the ANXA2 complex can also promote angiogenesis via its pro-fibrinolytic activity. The generation of ANXA2-deficient mice allowed us to first observe the pro-angiogenic role of ANXA2 in vivo. Further investigations have provided additional details regarding the mechanism for ANXA2 regulation of retinal and corneal angiogenesis. Other studies have reported that ANXA2 supports angiogenesis in specific tumor-related settings. Here, we summarize results from in vivo studies that illustrate the pro-angiogenic role of ANXA2, and discuss the critical questions that may lead to an advanced understanding of the molecular mechanisms for ANXA2-mediated angiogenesis. Finally, highlights from studies on ANXA2-interacting agents offer potential therapeutic opportunities for the application of ANXA2-centered pharmaceuticals in angiogenesis-related disorders.
Acknowledgments
This work was supported by grants to KAH from the National Heart, Lung, and Blood Institute (HL042493), the U.S. Department of Defense (MR130194), the March of Dimes Foundation 6-FY15-356, and the Qatar National Research Fund (5-932-3-208 and 6-736-3-187).
References
Ambartsumian, N., Klingelhofer, J., Grigorian, M., Christensen, C., Kriajevska, M., Tulchinsky, E., Georgiev, G., Berezin, V., Bock, E., Rygaard, J., et al. (2001). The metastasis-associated Mts1(S100A4) protein could act as an angiogenic factor. Oncogene 20, 4685–4695.10.1038/sj.onc.1204636Suche in Google Scholar PubMed
Ambati, B.K., Nozaki, M., Singh, N., Takeda, A., Jani, P.D., Suthar, T., Albuquerque, R.J., Richter, E., Sakurai, E., Newcomb, M.T., et al. (2006). Corneal avascularity is due to soluble VEGF receptor-1. Nature 443, 993–997.10.1038/nature05249Suche in Google Scholar PubMed PubMed Central
Andrae, J., Gallini, R., and Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22, 1276–1312.10.1101/gad.1653708Suche in Google Scholar PubMed PubMed Central
Andrei, C., Dazzi, C., Lotti, L., Torrisi, M.R., Chimini, G., and Rubartelli, A. (1999). The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol. Biol. Cell 10, 1463–1475.10.1091/mbc.10.5.1463Suche in Google Scholar PubMed PubMed Central
Andronicos, N.M., Chen, E.I., Baik, N., Bai, H., Parmer, C.M., Kiosses, W.B., Kamps, M.P., Yates, J.R., 3rd, Parmer, R.J., and Miles, L.A. (2010). Proteomics-based discovery of a novel, structurally unique, and developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface plasminogen activation. Blood 115, 1319–1330.10.1182/blood-2008-11-188938Suche in Google Scholar PubMed PubMed Central
Armulik, A., Genove, G., and Betsholtz, C. (2011). Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215.10.1016/j.devcel.2011.07.001Suche in Google Scholar PubMed
Asano, M.K. and Dray, P.B. (2014). Retinopathy of prematurity. Dis. Mon. 60, 282–291.10.1016/j.disamonth.2014.03.009Suche in Google Scholar PubMed
Bae, S.M., Lee, C.H., Cho, Y.L., Nam, K.H., Kim, Y.W., Kim, C.K., Han, B.D., Lee, Y.J., Chun, H.J., and Ahn, W.S. (2005). Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients. Gynecol. Oncol. 99, 26–35.10.1016/j.ygyno.2005.05.041Suche in Google Scholar PubMed
Bajou, K., Noel, A., Gerard, R.D., Masson, V., Brunner, N., Holst-Hansen, C., Skobe, M., Fusenig, N.E., Carmeliet, P., Collen, D., et al. (1998). Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 4, 923–928.10.1038/nm0898-923Suche in Google Scholar PubMed
Becker, T., Weber, K., and Johnsson, N. (1990). Protein-protein recognition via short amphiphilic helices; a mutational analysis of the binding site of annexin II for p11. EMBO J. 9, 4207–4213.10.1002/j.1460-2075.1990.tb07868.xSuche in Google Scholar PubMed PubMed Central
Botta, A., Delteil, F., Mettouchi, A., Vieira, A., Estrach, S., Negroni, L., Stefani, C., Lemichez, E., Meneguzzi, G., and Gagnoux-Palacios, L. (2012). Confluence switch signaling regulates ECM composition and the plasmin proteolytic cascade in keratinocytes. J. Cell Sci. 125, 4241–4252.10.1242/jcs.096289Suche in Google Scholar
Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature 438, 932–936.10.1038/nature04478Suche in Google Scholar
Cesarman, G.M., Guevara, C.A., and Hajjar, K.A. (1994). An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA). II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation. J. Biol. Chem. 269, 21198–21203.10.1016/S0021-9258(17)31948-8Suche in Google Scholar
Chen, P., Cescon, M., and Bonaldo, P. (2013). Collagen VI in cancer and its biological mechanisms. Trends Mol. Med. 19, 410–417.10.1016/j.molmed.2013.04.001Suche in Google Scholar PubMed
Connor, K.M., Krah, N.M., Dennison, R.J., Aderman, C.M., Chen, J., Guerin, K.I., Sapieha, P., Stahl, A., Willett, K.L., and Smith, L.E. (2009). Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat. Protoc. 4, 1565–1573.10.1038/nprot.2009.187Suche in Google Scholar PubMed PubMed Central
Das, R., Burke, T., and Plow, E.F. (2007). Histone H2B as a functionally important plasminogen receptor on macrophages. Blood 110, 3763–3772.10.1182/blood-2007-03-079392Suche in Google Scholar PubMed PubMed Central
Dassah, M., Almeida, D., Hahn, R., Bonaldo, P., Worgall, S., and Hajjar, K.A. (2014). Annexin A2 mediates secretion of collagen VI, pulmonary elasticity and apoptosis of bronchial epithelial cells. J. Cell Sci. 127, 828–844.10.1242/jcs.137802Suche in Google Scholar PubMed PubMed Central
Davies, B.R., O’Donnell, M., Durkan, G.C., Rudland, P.S., Barraclough, R., Neal, D.E., and Mellon, J.K. (2002). Expression of S100A4 protein is associated with metastasis and reduced survival in human bladder cancer. J. Pathol. 196, 292–299.10.1002/path.1051Suche in Google Scholar PubMed
DeBin, J.A., Maggio, J.E., and Strichartz, G.R. (1993). Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. 264, C361–C369.10.1152/ajpcell.1993.264.2.C361Suche in Google Scholar PubMed
Deora, A.B., Kreitzer, G., Jacovina, A.T., and Hajjar, K.A. (2004). An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface. J. Biol. Chem. 279, 43411–43418.10.1074/jbc.M408078200Suche in Google Scholar PubMed
Didiasova, M., Wujak, L., Wygrecka, M., and Zakrzewicz, D. (2014). From plasminogen to plasmin: role of plasminogen receptors in human cancer. Int. J. Mol. Sci. 15, 21229–21252.10.3390/ijms151121229Suche in Google Scholar
Durham, J.T. and Herman, I.M. (2011). Microvascular modifications in diabetic retinopathy. Curr. Diab. Rep. 11, 253–264.10.1007/s11892-011-0204-0Suche in Google Scholar
Eble, J.A. and Niland, S. (2009). The extracellular matrix of blood vessels. Curr. Pharm. Des. 15, 1385–1400.10.2174/138161209787846757Suche in Google Scholar
Ebos, J.M. and Kerbel, R.S. (2011). Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8, 210–221.10.1038/nrclinonc.2011.21Suche in Google Scholar
Emoto, K., Yamada, Y., Sawada, H., Fujimoto, H., Ueno, M., Takayama, T., Kamada, K., Naito, A., Hirao, S., and Nakajima, Y. (2001). Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer 92, 1419–1426.10.1002/1097-0142(20010915)92:6<1419::AID-CNCR1465>3.0.CO;2-JSuche in Google Scholar
Falavarjani, K.G. and Nguyen, Q.D. (2013). Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond) 27, 787–794.10.1038/eye.2013.107Suche in Google Scholar
Falcone, D.J., McCaffrey, T.A., Haimovitz-Friedman, A., Vergilio, J.A., and Nicholson, A.C. (1993). Macrophage and foam cell release of matrix-bound growth factors. Role of plasminogen activation. J. Biol. Chem. 268, 11951–11958.10.1016/S0021-9258(19)50292-7Suche in Google Scholar
Ferenczy, A. (1998). Pathophysiology of adenomyosis. Hum. Reprod. Update 4, 312–322.10.1093/humupd/4.4.312Suche in Google Scholar
Ferrara, N., Gerber, H.-P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat. Med. 9, 669–676.10.1038/nm0603-669Suche in Google Scholar
Fleck, B.W. (2013). Management of retinopathy of prematurity. Arch. Dis. Child Fetal. Neonatal. Ed. 98, F454–F456.10.1136/archdischild-2013-303933Suche in Google Scholar
Flood, E.C. and Hajjar, K.A. (2011). The annexin A2 system and vascular homeostasis. Vascul. Pharmacol. 54, 59–67.10.1016/j.vph.2011.03.003Suche in Google Scholar
Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27–31.10.1038/nm0195-27Suche in Google Scholar
Folkman, J. and Shing, Y. (1992). Angiogenesis. J. Biol. Chem. 267, 10931–10934.10.1016/S0021-9258(19)49853-0Suche in Google Scholar
Gariano, R.F. and Gardner, T.W. (2005). Retinal angiogenesis in development and disease. Nature 438, 960–966.10.1038/nature04482Suche in Google Scholar
Genetos, D.C., Wong, A., Watari, S., and Yellowley, C.E. (2010). Hypoxia increases Annexin A2 expression in osteoblastic cells via VEGF and ERK. Bone 47, 1013–1019.10.1016/j.bone.2010.08.024Suche in Google Scholar
Gerke, V. and Moss, S.E. (2002). Annexins: from structure to function. Physiol. Rev. 82, 331–371.10.1152/physrev.00030.2001Suche in Google Scholar
Gerke, V., Creutz, C.E., and Moss, S.E. (2005). Annexins: linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol. 6, 449–461.10.1038/nrm1661Suche in Google Scholar
Gilbert, C. (2008). Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control. Early Hum. Dev. 84, 77–82.10.1016/j.earlhumdev.2007.11.009Suche in Google Scholar
Hajjar, K.A. (1993). Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor. J. Clin. Invest. 91, 2873–2879.10.1172/JCI116532Suche in Google Scholar
Hajjar, K.A. and Jacovina, A.T. (1998). Modulation of annexin II by homocysteine: implications for atherothrombosis. J. Invest. Med. 46, 364–369.Suche in Google Scholar
Hajjar, K.A., Jacovina, A.T., and Chacko, J. (1994). An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J. Biol. Chem. 269, 21191–21197.10.1016/S0021-9258(17)31947-6Suche in Google Scholar
Hajjar, K.A., Mauri, L., Jacovina, A.T., Zhong, F., Mirza, U.A., Padovan, J.C., and Chait, B.T. (1998). Tissue plasminogen activator binding to the annexin II tail domain. Direct modulation by homocysteine. J. Biol. Chem. 273, 9987–9993.10.1074/jbc.273.16.9987Suche in Google Scholar PubMed
Han, Y., Ye, J., Dong, Y., Xu, Z., and Du, Q. (2015). Expression and significance of annexin A2 in patients with gastric adenocarcinoma and the association with E-cadherin. Exp. Ther. Med. 10, 549–554.10.3892/etm.2015.2565Suche in Google Scholar PubMed PubMed Central
Hard, A.L. and Hellstrom, A. (2011). On safety, pharmacokinetics and dosage of bevacizumab in ROP treatment – a review. Acta Paediatr 100, 1523–1527.10.1111/j.1651-2227.2011.02445.xSuche in Google Scholar PubMed PubMed Central
He, K.L., Deora, A.B., Xiong, H., Ling, Q., Weksler, B.B., Niesvizky, R., and Hajjar, K.A. (2008). Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J. Biol. Chem. 283, 19192–19200.10.1074/jbc.M800100200Suche in Google Scholar PubMed PubMed Central
Heissig, B., Ohki-Koizumi, M., Tashiro, Y., Gritli, I., Sato-Kusubata, K., and Hattori, K. (2012). New functions of the fibrinolytic system in bone marrow cell-derived angiogenesis. Int. J. Hematol. 95, 131–137.10.1007/s12185-012-1016-ySuche in Google Scholar PubMed
Heymans, S., Luttun, A., Nuyens, D., Theilmeier, G., Creemers, E., Moons, L., Dyspersin, G.D., Cleutjens, J.P., Shipley, M., Angellilo, A., et al. (1999). Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat. Med. 5, 1135–1142.10.1038/13459Suche in Google Scholar PubMed
Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H., Oosterom, A.T.V., and Bruijn, E.A.D. (2004). Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 56, 549–580.10.1124/pr.56.4.3Suche in Google Scholar PubMed
Huang, B., Deora, A.B., He, K.L., Chen, K., Sui, G., Jacovina, A.T., Almeida, D., Hong, P., Burgman, P., and Hajjar, K.A. (2011). Hypoxia-inducible factor-1 drives annexin A2 system-mediated perivascular fibrin clearance in oxygen-induced retinopathy in mice. Blood 118, 2918–2929.10.1182/blood-2011-03-341214Suche in Google Scholar PubMed PubMed Central
Jacoby, D.B., Dyskin, E., Yalcin, M., Kesavan, K., Dahlberg, W., Ratliff, J., Johnson, E.W., and Mousa, S.A. (2010). Potent pleiotropic anti-angiogenic effects of TM601, a synthetic chlorotoxin peptide. Anticancer Res. 30, 39–46.Suche in Google Scholar
Jacovina, A.T., Zhong, F., Khazanova, E., Lev, E., Deora, A.B., and Hajjar, K.A. (2001). Neuritogenesis and the nerve growth factor-induced differentiation of PC-12 cells requires annexin II-mediated plasmin generation. J. Biol. Chem. 276, 49350–49358.10.1074/jbc.M106289200Suche in Google Scholar PubMed
Jacovina, A.T., Deora, A.B., Ling, Q., Broekman, M.J., Almeida, D., Greenberg, C.B., Marcus, A.J., Smith, J.D., and Hajjar, K.A. (2009). Homocysteine inhibits neoangiogenesis in mice through blockade of annexin A2-dependent fibrinolysis. J. Clin. Invest. 119, 3384–3394.10.1172/JCI39591Suche in Google Scholar PubMed PubMed Central
Johnsson, N., Marriott, G., and Weber, K. (1988). p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino-terminal amphiphatic helix. EMBO J. 7, 2435–2442.10.1002/j.1460-2075.1988.tb03089.xSuche in Google Scholar
Katanasaka, Y., Asai, T., Naitou, H., Ohashi, N., and Oku, N. (2007). Proteomic characterization of angiogenic endothelial cells stimulated with cancer cell-conditioned medium. Biol. Pharm. Bull 30, 2300–2307.10.1248/bpb.30.2300Suche in Google Scholar
Keller, M., Ruegg, A., Werner, S., and Beer, H.D. (2008). Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831.10.1016/j.cell.2007.12.040Suche in Google Scholar
Kesavan, K., Ratliff, J., Johnson, E.W., Dahlberg, W., Asara, J.M., Misra, P., Frangioni, J.V., and Jacoby, D.B. (2010). Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and anti-angiogenic effects. J. Biol. Chem. 285, 4366–4374.10.1074/jbc.M109.066092Suche in Google Scholar
Kube, E., Becker, T., Weber, K., and Gerke, V. (1992). Protein-protein interaction studied by site-directed mutagenesis. Characterization of the annexin II-binding site on p11, a member of the S100 protein family. J. Biol. Chem. 267, 14175–14182.10.1016/S0021-9258(19)49694-4Suche in Google Scholar
Kwon, M., MacLeod, T.J., Zhang, Y., and Waisman, D.M. (2005). S100A10, annexin A2, and annexin a2 heterotetramer as candidate plasminogen receptors. Front. Biosci. 10, 300–325.10.2741/1529Suche in Google Scholar PubMed
Lillis, A.P., Van Duyn, L.B., Murphy-Ullrich, J.E., and Strickland, D.K. (2008). LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol. Rev. 88, 887–918.10.1152/physrev.00033.2007Suche in Google Scholar PubMed PubMed Central
Lima e Silva, R., Shen, J., Gong, Y.Y., Seidel, C.P., Hackett, S.F., Kesavan, K., Jacoby, D.B., and Campochiaro, P.A. (2010). Agents that bind annexin A2 suppress ocular neovascularization. J. Cell Physiol. 225, 855–864.10.1002/jcp.22296Suche in Google Scholar PubMed PubMed Central
Lindblom, P., Gerhardt, H., Liebner, S., Abramsson, A., Enge, M., Hellstrom, M., Backstrom, G., Fredriksson, S., Landegren, U., Nystrom, H.C., et al. (2003). Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 17, 1835–1840.10.1101/gad.266803Suche in Google Scholar PubMed PubMed Central
Ling, Q., Jacovina, A.T., Deora, A., Febbraio, M., Simantov, R., Silverstein, R.L., Hempstead, B., Mark, W.H., and Hajjar, K.A. (2004). Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J. Clin. Invest. 113, 38–48.10.1172/JCI19684Suche in Google Scholar PubMed PubMed Central
Luo, M. and Hajjar, K.A. (2013). Annexin A2 system in human biology: cell surface and beyond. Semin. Thromb. Hemost. 39, 338–346.10.1055/s-0033-1334143Suche in Google Scholar PubMed PubMed Central
Lyons, R.M., Gentry, L.E., Purchio, A.F., and Moses, H.L. (1990). Mechanism of activation of latent recombinant transforming growth factor β 1 by plasmin. J. Cell Biol. 110, 1361–1367.10.1083/jcb.110.4.1361Suche in Google Scholar PubMed PubMed Central
Lyons, S.A., O’Neal, J., and Sontheimer, H. (2002). Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39, 162–173.10.1002/glia.10083Suche in Google Scholar PubMed
Makanya, A.N., Hlushchuk, R., and Djonov, V.G. (2009). Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12, 113–123.10.1007/s10456-009-9129-5Suche in Google Scholar PubMed
Mamelak, A.N. and Jacoby, D.B. (2007). Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Expert. Opin. Drug Deliv. 4, 175–186.10.1517/17425247.4.2.175Suche in Google Scholar PubMed
Markus, H.S. (2008). Genes, endothelial function and cerebral small vessel disease in man. Exp. Physiol. 93, 121–127.10.1113/expphysiol.2007.038752Suche in Google Scholar PubMed
McMahon, G.A., Petitclerc, E., Stefansson, S., Smith, E., Wong, M.K., Westrick, R.J., Ginsburg, D., Brooks, P.C., and Lawrence, D.A. (2001). Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J. Biol. Chem. 276, 33964–33968.10.1074/jbc.M105980200Suche in Google Scholar PubMed
Meyerle, C.B., Chew, E.Y., and Ferris, F.L. (2008) Nonproliferative diabetic retinopathy. In: Contemporary Diabetes: Diabetic Retinopathy, E.J. Duh, ed. (New York, NY, USA: Humana Press), pp. 3–27.10.1007/978-1-59745-563-3_1Suche in Google Scholar
Miles, L.A., Dahlberg, C.M., Plescia, J., Felez, J., Kato, K., and Plow, E.F. (1991). Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 30, 1682–1691.10.1021/bi00220a034Suche in Google Scholar PubMed
Morozova, K., Sridhar, S., Zolla, V., Clement, C.C., Scharf, B., Verzani, Z., Diaz, A., Larocca, J.N., Hajjar, K.A., Cuervo, A.M., et al. (2015). Annexin A2 promotes phagophore assembly by enhancing Atg16L+ vesicle biogenesis and homotypic fusion. Nat. Commun. 6, 5856.10.1038/ncomms6856Suche in Google Scholar PubMed PubMed Central
Netzel-Arnett, S., Mitola, D.J., Yamada, S.S., Chrysovergis, K., Holmbeck, K., Birkedal-Hansen, H., and Bugge, T.H. (2002). Collagen dissolution by keratinocytes requires cell surface plasminogen activation and matrix metalloproteinase activity. J. Biol. Chem. 277, 45154–45161.10.1074/jbc.M206354200Suche in Google Scholar PubMed
Nickel, W. and Seedorf, M. (2008). Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu. Rev. Cell Dev. Biol. 24, 287–308.10.1146/annurev.cellbio.24.110707.175320Suche in Google Scholar PubMed
Nishi, M., Abe, Y., Tomii, Y., Tsukamoto, H., Kijima, H., Yamazaki, H., Ohnishi, Y., Iwasaki, M., Inoue, H., Ueyama, Y., et al. (2005). Cell binding isoforms of vascular endothelial growth factor-A (VEGF189) contribute to blood flow-distant metastasis of pulmonary adenocarcinoma. Int. J. Oncol. 26, 1517–1524.10.3892/ijo.26.6.1517Suche in Google Scholar PubMed
Norrby, K. (2006). In vivo models of angiogenesis. J. Cell Mol. Med. 10, 588–612.10.1111/j.1582-4934.2006.tb00423.xSuche in Google Scholar PubMed PubMed Central
Nussenzweig, S.C., Verma, S., and Finkel, T. (2015). The role of autophagy in vascular biology. Circ. Res. 116, 480–488.10.1161/CIRCRESAHA.116.303805Suche in Google Scholar PubMed PubMed Central
Nygard, O., Nordrehaug, J.E., Refsum, H., Ueland, P.M., Farstad, M., and Vollset, S.E. (1997). Plasma homocysteine levels and mortality in patients with coronary artery disease. N. Engl. J. Med. 337, 230–236.10.1056/NEJM199707243370403Suche in Google Scholar PubMed
Nygaard, S.J., Haugland, H.K., Kristoffersen, E.K., Lund-Johansen, M., Laerum, O.D., and Tysnes, O.B. (1998). Expression of annexin II in glioma cell lines and in brain tumor biopsies. J. Neurooncol. 38, 11–18.10.1023/A:1005953000523Suche in Google Scholar
Onishi, M., Ichikawa, T., Kurozumi, K., Inoue, S., Maruo, T., Otani, Y., Fujii, K., Ishida, J., Shimazu, Y., Yoshida, K., et al. (2015). Annexin A2 regulates angiogenesis and invasion phenotypes of malignant glioma. Brain Tumor Pathol. 32, 184–194.10.1007/s10014-015-0216-6Suche in Google Scholar PubMed
Otrock, Z.K., Mahfouz, R.A., Makarem, J.A., and Shamseddine, A.I. (2007). Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol. Dis. 39, 212–220.10.1016/j.bcmd.2007.04.001Suche in Google Scholar PubMed
Peterson, E.A., Sutherland, M.R., Nesheim, M.E., and Pryzdial, E.L. (2003). Thrombin induces endothelial cell-surface exposure of the plasminogen receptor annexin 2. J. Cell Sci. 116, 2399–2408.10.1242/jcs.00434Suche in Google Scholar PubMed
Potente, M., Gerhardt, H., and Carmeliet, P. (2011). Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887.10.1016/j.cell.2011.08.039Suche in Google Scholar
Prudovsky, I. (2013). Nonclassically secreted regulators of angiogenesis. Angiol. Open Access 1, 1000101.10.4172/2329-9495.1000101Suche in Google Scholar
Rabouille, C., Malhotra, V., and Nickel, W. (2012). Diversity in unconventional protein secretion. J. Cell Sci. 125, 5251–5255.10.1242/jcs.103630Suche in Google Scholar
Ramos-DeSimone, N., Hahn-Dantona, E., Sipley, J., Nagase, H., French, D.L., and Quigley, J.P. (1999). Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J. Biol. Chem. 274, 13066–13076.10.1074/jbc.274.19.13066Suche in Google Scholar
Rani, S.G., Mohan, S.K., and Yu, C. (2010). Molecular level interactions of S100A13 with amlexanox: inhibitor for formation of the multiprotein complex in the nonclassical pathway of acidic fibroblast growth factor. Biochemistry 49, 2585–2592.10.1021/bi9019077Suche in Google Scholar
Reeves, S.A., Chavez-Kappel, C., Davis, R., Rosenblum, M., and Israel, M.A. (1992). Developmental regulation of annexin II (Lipocortin 2) in human brain and expression in high grade glioma. Cancer Res. 52, 6871–6876.Suche in Google Scholar
Rety, S., Sopkova, J., Renouard, M., Osterloh, D., Gerke, V., Tabaries, S., Russo-Marie, F., and Lewit-Bentley, A. (1999). The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nat. Struct. Biol. 6, 89–95.10.1038/4965Suche in Google Scholar
Rifkin, D.B., Mazzieri, R., Munger, J.S., Noguera, I., and Sung, J. (1999). Proteolytic control of growth factor availability. APMIS 107, 80–85.10.1111/j.1699-0463.1999.tb01529.xSuche in Google Scholar
Risau, W. and Flamme, I. (1995). Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73–91.10.1146/annurev.cb.11.110195.000445Suche in Google Scholar
Roseman, B.J., Bollen, A., Hsu, J., Lamborn, K., and Israel, M.A. (1994). Annexin II marks astrocytic brain tumors of high histologic grade. Oncol. Res. 6, 561–567.Suche in Google Scholar
Rosty, C., Ueki, T., Argani, P., Jansen, M., Yeo, C.J., Cameron, J.L., Hruban, R.H., and Goggins, M. (2002). Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am. J. Pathol. 160, 45–50.10.1016/S0002-9440(10)64347-7Suche in Google Scholar
Rudland, P.S., Platt-Higgins, A., Renshaw, C., West, C.R., Winstanley, J.H., Robertson, L., and Barraclough, R. (2000). Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res. 60, 1595–1603.Suche in Google Scholar
Sato, T., Wada, K., Arahori, H., Kuno, N., Imoto, K., Iwahashi-Shima, C., and Kusaka, S. (2012). Serum concentrations of bevacizumab (avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am. J. Ophthalmol. 153, 327–333.10.1016/j.ajo.2011.07.005Suche in Google Scholar PubMed
Scharf, B., Clement, C.C., Wu, X.X., Morozova, K., Zanolini, D., Follenzi, A., Larocca, J.N., Levon, K., Sutterwala, F.S., Rand, J., et al. (2012). Annexin A2 binds to endosomes following organelle destabilization by particulate wear debris. Nat. Commun 3, 755.10.1038/ncomms1754Suche in Google Scholar PubMed PubMed Central
Selhub, J. (1999). Homocysteine metabolism. Annu. Rev. Nutr. 19, 217–246.10.1146/annurev.nutr.19.1.217Suche in Google Scholar PubMed
Semov, A., Moreno, M.J., Onichtchenko, A., Abulrob, A., Ball, M., Ekiel, I., Pietrzynski, G., Stanimirovic, D., and Alakhov, V. (2005). Metastasis-associated protein S100A4 induces angiogenesis through interaction with Annexin II and accelerated plasmin formation. J. Biol. Chem. 280, 20833–20841.10.1074/jbc.M412653200Suche in Google Scholar PubMed
Sharma, M.R., Koltowski, L., Ownbey, R.T., Tuszynski, G.P., and Sharma, M.C. (2006). Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp. Mol. Pathol. 81, 146–156.10.1016/j.yexmp.2006.03.003Suche in Google Scholar PubMed
Sharma, M., Blackman, M.R., and Sharma, M.C. (2012). Antibody-directed neutralization of annexin II (ANX II) inhibits neoangiogenesis and human breast tumor growth in a xenograft model. Exp. Mol. Pathol. 92, 175–184.10.1016/j.yexmp.2011.10.003Suche in Google Scholar PubMed
Shimizu, A., Nakayama, H., Wang, P., Konig, C., Akino, T., Sandlund, J., Coma, S., Italiano, J.E., Jr., Mammoto, A., Bielenberg, D.R., et al. (2013). Netrin-1 promotes glioblastoma cell invasiveness and angiogenesis by multiple pathways including activation of RhoA, cathepsin B, and cAMP-response element-binding protein. J. Biol. Chem. 288, 2210–2222.10.1074/jbc.M112.397398Suche in Google Scholar PubMed PubMed Central
Smith, L.E., Wesolowski, E., McLellan, A., Kostyk, S.K., D’Amato, R., Sullivan, R., and D’Amore, P.A. (1994). Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 35, 101–111.Suche in Google Scholar
Staton, C.A., Reed, M.W., and Brown, N.J. (2009). A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 90, 195–221.10.1111/j.1365-2613.2008.00633.xSuche in Google Scholar PubMed PubMed Central
Thompson, W.D., Smith, E.B., Stirk, C.M., Marshall, F.I., Stout, A.J., and Kocchar, A. (1992). Angiogenic activity of fibrin degradation products is located in fibrin fragment E. J. Pathol. 168, 47–53.10.1002/path.1711680109Suche in Google Scholar PubMed
Valapala, M. and Vishwanatha, J.K. (2011). Lipid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2. J. Biol. Chem. 286, 30911–30925.10.1074/jbc.M111.271155Suche in Google Scholar PubMed PubMed Central
Valapala, M., Thamake, S.I., and Vishwanatha, J.K. (2011). A competitive hexapeptide inhibitor of annexin A2 prevents hypoxia-induced angiogenic events. J. Cell. Sci. 124, 1453–1464.10.1242/jcs.079236Suche in Google Scholar PubMed PubMed Central
Valapala, M., Maji, S., Borejdo, J., and Vishwanatha, J.K. (2014). Cell surface translocation of annexin A2 facilitates glutamate-induced extracellular proteolysis. J. Biol. Chem. 289, 15915–15926.10.1074/jbc.M113.511550Suche in Google Scholar
Visse, R., and Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827–839.10.1161/01.RES.0000070112.80711.3DSuche in Google Scholar
Whitelock, J.M., Murdoch, A.D., Iozzo, R.V., and Underwood, P.A. (1996). The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271, 10079–10086.10.1074/jbc.271.17.10079Suche in Google Scholar
Yang, X., Dong, X., Jia, C., and Wang, Y. (2013). Profiling of genes associated with the murine model of oxygen-induced retinopathy. Mol. Vis. 19, 775–788.Suche in Google Scholar
Yepes, M. (2015). Tissue-type plasminogen activator is a neuroprotectant in the central nervous system. Front. Cell Neurosci. 9, 304.10.3389/fncel.2015.00304Suche in Google Scholar
Zhai, H., Acharya, S., Gravanis, I., Mehmood, S., Seidman, R.J., Shroyer, K.R., Hajjar, K.A., and Tsirka, S.E. (2011). Annexin A2 promotes glioma cell invasion and tumor progression. J. Neurosci. 31, 14346–14360.10.1523/JNEUROSCI.3299-11.2011Suche in Google Scholar
Zhao, S., Huang, L., Wu, J., Zhang, Y., Pan, D., and Liu, X. (2009). Vascular endothelial growth factor upregulates expression of annexin A2 in vitro and in a mouse model of ischemic retinopathy. Mol. Vis. 15, 1231–1242.Suche in Google Scholar
Zhao, S.H., Pan, D.Y., Zhang, Y., Wu, J.H., Liu, X., and Xu, Y. (2010). Annexin A2 promotes choroidal neovascularization by increasing vascular endothelial growth factor expression in a rat model of argon laser coagulation-induced choroidal neovascularization. Chin. Med. J. (Engl) 123, 713–721.10.3760/cma.j.issn.0366-6999.2010.06.014Suche in Google Scholar
Zhou, S., Yi, T., Liu, R., Bian, C., Qi, X., He, X., Wang, K., Li, J., Zhao, X., Huang, C., et al. (2012). Proteomics identification of annexin A2 as a key mediator in the metastasis and proangiogenesis of endometrial cells in human adenomyosis. Mol. Cell Proteomics 11, M112.017988.10.1074/mcp.M112.017988Suche in Google Scholar
Zhu, G., Chen, X., Mao, Y., Kang, L., Ma, X., and Jiang, Y. (2015). Characterization of annexin A2 in chicken follicle development: evidence for its involvement in angiogenesis. Anim. Reprod. Sci. 161, 104–111.10.1016/j.anireprosci.2015.08.011Suche in Google Scholar
Zobiack, N., Gerke, V., and Rescher, U. (2001). Complex formation and submembranous localization of annexin 2 and S100A10 in live HepG2 cells. FEBS Lett. 500, 137–140.10.1016/S0014-5793(01)02604-7Suche in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: annexins in health and disease
- HIGHLIGHT: ANNEXINS IN HEALTH AND DISEASE
- Emerging functions as host cell factors – an encyclopedia of annexin-pathogen interactions
- Annexins in plasma membrane repair
- Annexin A1: shifting the balance towards resolution and repair
- Annexin A1 and resolution of inflammation: tissue repairing properties and signalling signature
- Annexins A2 and A8 in endothelial cell exocytosis and the control of vascular homeostasis
- The annexin A2 system and angiogenesis
- More than just innate affairs – on the role of annexins in adaptive immunity
- Annexins – insights from knockout mice
- Review
- Regulation of Rap GTPases in mammalian neurons
- Research Articles/Short Communications
- Protein Structure and Function
- Insights into K-Ras 4B regulation by post-translational lysine acetylation
- Cell Biology and Signaling
- MicroRNA-544 down-regulates both Bcl6 and Stat3 to inhibit tumor growth of human triple negative breast cancer
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: annexins in health and disease
- HIGHLIGHT: ANNEXINS IN HEALTH AND DISEASE
- Emerging functions as host cell factors – an encyclopedia of annexin-pathogen interactions
- Annexins in plasma membrane repair
- Annexin A1: shifting the balance towards resolution and repair
- Annexin A1 and resolution of inflammation: tissue repairing properties and signalling signature
- Annexins A2 and A8 in endothelial cell exocytosis and the control of vascular homeostasis
- The annexin A2 system and angiogenesis
- More than just innate affairs – on the role of annexins in adaptive immunity
- Annexins – insights from knockout mice
- Review
- Regulation of Rap GTPases in mammalian neurons
- Research Articles/Short Communications
- Protein Structure and Function
- Insights into K-Ras 4B regulation by post-translational lysine acetylation
- Cell Biology and Signaling
- MicroRNA-544 down-regulates both Bcl6 and Stat3 to inhibit tumor growth of human triple negative breast cancer