Abstract
Ras is a molecular switch cycling between an active, GTP-bound and an inactive, GDP-bound state. Mutations in Ras, mostly affecting the off-switch, are found in many human tumours. Recently, it has been shown that K-Ras 4B is targeted by lysine acetylation at K104. Based on results obtained for an acetylation mimetic Ras mutant (K104Q), it was hypothesised that K104-acetylation might interfere with its oncogenicity by impairing SOS-catalysed guanine-nucleotide exchange. We prepared site-specifically K104-acetylated K-Ras 4B and the corresponding oncogenic mutant protein G12V using the genetic-code expansion concept. We found that SOS-catalysed nucleotide exchange, also of allosterically activated SOS, was neither affected by acetylation of K104 in wildtype K-Ras 4B nor in the G12V mutant, suggesting that glutamine is a poor mimetic for acetylation at this site. In vitro, the lysine-acetyltransferases CBP and p300 were able to acetylate both, wildtype and G12V K-Ras 4B. In addition to K104 we identified further acetylation sites in K-Ras 4B, including K147, within the important G5/SAK-motif. However, the intrinsic and the SOS-catalysed nucleotide exchange was not affected by K147-acetylation of K-Ras 4B. Finally, we show that Sirt2 and HDAC6 do neither deacetylate K-Ras 4B if acetylated at K104 nor if acetylated at K147 in vitro.
Acknowledgments
We thank Prof. Dr. M. Krüger and Dr. Hendrik Nolte, Astrid Wilbrand-Hennes and René Grandjean (CECAD proteomics facility) for support in mass spectrometry. We are grateful to Dr. Stefan Müller (CMMC Cologne, Central Bioanalytics) for his support in molecular weight determination. This work is funded by the Emmy Noether Programme of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, Grant: LA2984-1/1).
Conflict of interest statement: The authors declare no competing financial interests.
References
Baines, A.T., Xu, D., and Der, C.J. (2011). Inhibition of Ras for cancer treatment: the search continues. Future Med. Chem. 3, 1787–1808.10.4155/fmc.11.121Suche in Google Scholar PubMed PubMed Central
Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D., and Kuriyan, J. (1998). The structural basis of the activation of Ras by Sos. Nature 394, 337–343.10.1038/28548Suche in Google Scholar PubMed
Bos, J.L. (1989). Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689.Suche in Google Scholar
Bos, J.L., Rehmann, H., and Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877.10.1016/j.cell.2007.05.018Suche in Google Scholar PubMed
Buhrman, G., Holzapfel, G., Fetics, S., and Mattos, C. (2010). Allosteric modulation of ras positions Q61 for a direct role in catalysis. Proc. Natl. Acad. Sci. USA 107, 4931–4936.10.1073/pnas.0912226107Suche in Google Scholar PubMed PubMed Central
Cacev, T., Radosevic, S., Spaventi, R., Pavelic, K., and Kapitanovic, S. (2005). NF1 gene loss of heterozygosity and expression analysis in sporadic colon cancer. Gut 54, 1129–1135.10.1136/gut.2004.053348Suche in Google Scholar PubMed PubMed Central
Capella, G., Cronauer-Mitra, S., Pienado, M.A., and Perucho, M. (1991). Frequency and spectrum of mutations at codons 12 and 13 of the c-K-ras gene in human tumors. Environ. Health Perspect 93, 125–131.10.1289/ehp.9193125Suche in Google Scholar PubMed PubMed Central
Castellano, E. and Santos, E. (2011). Functional specificity of ras isoforms: so similar but so different. Genes Cancer 2, 216–231.10.1177/1947601911408081Suche in Google Scholar PubMed PubMed Central
Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V., and Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840.10.1126/science.1175371Suche in Google Scholar PubMed
Cogoi, S., Codognotto, A., Rapozzi, V., Meeuwenoord, N., van der Marel, G., and Xodo, L.E. (2005). Transcription inhibition of oncogenic KRAS by a mutation-selective peptide nucleic acid conjugated to the PKKKRKV nuclear localization signal peptide. Biochemistry 44, 10510–10519.10.1021/bi0505215Suche in Google Scholar PubMed
Corbeel, L. and Freson, K. (2008). Rab proteins and rab-associated proteins: major actors in the mechanism of protein-trafficking disorders. Eur. J. Pediatr. 167, 723–729.10.1007/s00431-008-0740-zSuche in Google Scholar PubMed PubMed Central
Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., and Mann, M. (2011). Andromeda: a peptide search engine integrated into the maxquant environment. J. Proteome Res. 10, 1794–1805.10.1021/pr101065jSuche in Google Scholar PubMed
D’Souza-Schorey, C. and Chavrier, P. (2006). ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7, 347–358.10.1038/nrm1910Suche in Google Scholar PubMed
de Boor, S., Knyphausen, P., Kuhlmann, N., Wroblowski, S., Brenig, J., Scislowski, L., Baldus, L., Nolte, H., Kruger, M., and Lammers, M. (2015). Small GTP-binding protein ran is regulated by posttranslational lysine acetylation. Proc. Natl. Acad. Sci. USA 112, E3679–E3688.10.1073/pnas.1505995112Suche in Google Scholar PubMed PubMed Central
Deacon, S.W. and Gelfand, V.I. (2001). Of yeast, mice, and men. Rab proteins and organelle transport. J. Cell Biol. 152, F21–F24.10.1083/jcb.152.4.F21Suche in Google Scholar
DeLano, W.L. (2002). The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA.Suche in Google Scholar
Der, C.J. (1989). The ras family of oncogenes. Cancer Treat Res 47, 73–119.10.1007/978-1-4613-1599-5_4Suche in Google Scholar PubMed
Dhomen, N. and Marais, R. (2007). New insight into BRAF mutations in cancer. Curr. Opin. Genet. Dev. 17, 31–39.10.1016/j.gde.2006.12.005Suche in Google Scholar PubMed
Dutta, D. and Donaldson, J.G. (2015). Rab and Arf G proteins in endosomal trafficking. Methods Cell Biol. 130, 127–138.10.1016/bs.mcb.2015.04.004Suche in Google Scholar PubMed PubMed Central
Fernandez-Medarde, A. and Santos, E. (2011). Ras in cancer and developmental diseases. Genes. Cancer 2, 344–358.10.1177/1947601911411084Suche in Google Scholar PubMed PubMed Central
Fujimoto, H., Higuchi, M., Koike, M., Ode, H., Pinak, M., Bunta, J.K., Nemoto, T., Sakudoh, T., Honda, N., Maekawa, H., et al. (2012). A possible overestimation of the effect of acetylation on lysine residues in KQ mutant analysis. J. Comput. Chem. 33, 239–246.10.1002/jcc.21956Suche in Google Scholar PubMed
Garnett, M.J. and Marais, R. (2004). Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6, 313–319.10.1016/j.ccr.2004.09.022Suche in Google Scholar PubMed
Gasper, R., Meyer, S., Gotthardt, K., Sirajuddin, M., and Wittinghofer, A. (2009). It takes two to tango: regulation of G proteins by dimerization. Nat. Rev. Mol. Cell Biol. 10, 423–429.10.1038/nrm2689Suche in Google Scholar PubMed
Gelb, B.D. and Tartaglia, M. (2006). Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum. Mol. Genet. 15 Spec No 2, R220–R226.10.1093/hmg/ddl197Suche in Google Scholar PubMed
Giehl, K. (2005). Oncogenic Ras in tumour progression and metastasis. Biol. Chem. 386, 193–205.10.1515/BC.2005.025Suche in Google Scholar PubMed
Gremer, L., Gilsbach, B., Ahmadian, M.R., and Wittinghofer, A. (2008). Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction. Biol. Chem. 389, 1163–1171.10.1515/BC.2008.132Suche in Google Scholar PubMed
Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509–514.10.1126/science.279.5350.509Suche in Google Scholar PubMed
Hall, A. (2012). Rho family GTPases. Biochem. Soc. Trans. 40, 1378–1382.10.1042/BST20120103Suche in Google Scholar PubMed
Iversen, L., Tu, H.L., Lin, W.C., Christensen, S.M., Abel, S.M., Iwig, J., Wu, H.J., Gureasko, J., Rhodes, C., Petit, R.S., et al. (2014). Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science 345, 50–54.10.1126/science.1250373Suche in Google Scholar PubMed PubMed Central
James, G., Goldstein, J.L., and Brown, M.S. (1996). Resistance of K-RasBV12 proteins to farnesyltransferase inhibitors in Rat1 cells. Proc. Natl. Acad. Sci. USA 93, 4454–4458.10.1073/pnas.93.9.4454Suche in Google Scholar PubMed PubMed Central
Johnson, B., Goldberg-Strassler, D., Gripp, K., Thacker, M., Leoni, C., and Stevenson, D. (2015). Function and disability in children with Costello syndrome and Cardiofaciocutaneous syndrome. Am. J. Med. Genet. A 167A, 40–44.10.1002/ajmg.a.36828Suche in Google Scholar PubMed
Jorge, A.A., Malaquias, A.C., Arnhold, I.J., and Mendonca, B.B. (2009). Noonan syndrome and related disorders: a review of clinical features and mutations in genes of the RAS/MAPK pathway. Horm. Res. 71, 185–193.10.1159/000201106Suche in Google Scholar PubMed
Jura, N., Scotto-Lavino, E., Sobczyk, A., and Bar-Sagi, D. (2006). Differential modification of Ras proteins by ubiquitination. Mol. Cell 21, 679–687.10.1016/j.molcel.2006.02.011Suche in Google Scholar PubMed
Knyphausen, P., Kuhlmann, N., de Boor, S., and Lammers, M. (2015). Lysine-acetylation as a fundamental regulator of Ran function: implications for signaling of proteins of the Ras-superfamily. Small GTPases 6, 189–195.10.1080/21541248.2015.1103399Suche in Google Scholar PubMed PubMed Central
Kompier, L.C., Lurkin, I., van der Aa, M.N., van Rhijn, B.W., van der Kwast, T.H., and Zwarthoff, E.C. (2010). FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One 5, e13821.10.1371/journal.pone.0013821Suche in Google Scholar PubMed PubMed Central
Kratz, C.P., Schubbert, S., Bollag, G., Niemeyer, C.M., Shannon, K.M., and Zenker, M. (2006). Germline mutations in components of the Ras signaling pathway in Noonan syndrome and related disorders. Cell Cycle 5, 1607–1611.10.4161/cc.5.15.3128Suche in Google Scholar PubMed
Kuhlmann, N., Wroblowski, S., Knyphausen, P., de Boor, S., Brenig, J., Zienert, A.Y., Meyer-Teschendorf, K., Praefcke, G.J., Nolte, H., Kruger, M., et al. (2016a). Structural and mechanistic insights into the regulation of the fundamental Rho regulator RhoGDIα by lysine acetylation. J. Biol. Chem. 291, 5484–5499.10.1074/jbc.M115.707091Suche in Google Scholar PubMed PubMed Central
Kuhlmann, N., Wroblowski, S., Scislowski, L., and Lammers, M. (2016b). RhoGDIα acetylation at K127 and K141 affects binding toward nonprenylated RhoA. Biochemistry 55, 304–312.10.1021/acs.biochem.5b01242Suche in Google Scholar PubMed
Lammers, M., Neumann, H., Chin, J.W., and James, L.C. (2010). Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization. Nat. Chem. Biol. 6, 331–337.10.1038/nchembio.342Suche in Google Scholar PubMed PubMed Central
Lerner, E.C., Qian, Y., Blaskovich, M.A., Fossum, R.D., Vogt, A., Sun, J., Cox, A.D., Der, C.J., Hamilton, A.D., and Sebti, S.M. (1995). Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes. J. Biol. Chem. 270, 26802–26806.10.1074/jbc.270.45.26802Suche in Google Scholar PubMed
Lerner, E.C., Zhang, T.T., Knowles, D.B., Qian, Y., Hamilton, A.D., and Sebti, S.M. (1997). Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyl transferase and a geranylgeranyl transferase I inhibitor in human tumor cell lines. Oncogene. 15, 1283–1288.10.1038/sj.onc.1201296Suche in Google Scholar PubMed
Lin, W.C., Iversen, L., Tu, H.L., Rhodes, C., Christensen, S.M., Iwig, J.S., Hansen, S.D., Huang, W.Y., and Groves, J.T. (2014). H-Ras forms dimers on membrane surfaces via a protein-protein interface. Proc. Natl. Acad. Sci. USA 111, 2996–3001.10.1073/pnas.1321155111Suche in Google Scholar PubMed PubMed Central
Lundby, A., Lage, K., Weinert, B.T., Bekker-Jensen, D.B., Secher, A., Skovgaard, T., Kelstrup, C.D., Dmytriyev, A., Choudhary, C., Lundby, C., et al. (2012). Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep. 2, 419–431.10.1016/j.celrep.2012.07.006Suche in Google Scholar
Marais, R., Light, Y., Paterson, H.F., Mason, C.S., and Marshall, C.J. (1997). Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J. Biol. Chem. 272, 4378–4383.10.1074/jbc.272.7.4378Suche in Google Scholar
Margarit, S.M., Sondermann, H., Hall, B.E., Nagar, B., Hoelz, A., Pirruccello, M., Bar-Sagi, D., and Kuriyan, J. (2003). Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695.10.1016/S0092-8674(03)00149-1Suche in Google Scholar
McCormick, F. (1997). The superfamily of Ras-related GTPases. Jpn. J. Cancer Res. 88, inside front cover.Suche in Google Scholar
Melchior, F. (2001). Ran GTPase cycle: oOne mechanism -- two functions. Curr. Biol. 11, R257–260.10.1016/S0960-9822(01)00132-4Suche in Google Scholar
Muratcioglu, S., Chavan, T.S., Freed, B.C., Jang, H., Khavrutskii, L., Freed, R.N., Dyba, M.A., Stefanisko, K., Tarasov, S.G., Gursoy, A., et al. (2015). GTP-dependent K-Ras dimerization. Structure 23, 1325–1335.10.1016/j.str.2015.04.019Suche in Google Scholar PubMed PubMed Central
Myers, A., Bernstein, J.A., Brennan, M.L., Curry, C., Esplin, E.D., Fisher, J., Homeyer, M., Manning, M.A., Muller, E.A., Niemi, A.K., et al. (2014). Perinatal features of the RASopathies: Noonan syndrome, cardiofaciocutaneous syndrome and Costello syndrome. Am. J. Med. Genet. A 164A, 2814–2821.10.1002/ajmg.a.36737Suche in Google Scholar PubMed
Nam, J.S., Ino, Y., Sakamoto, M., and Hirohashi, S. (2002). Ras farnesylation inhibitor FTI-277 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis. Jpn J. Cancer Res. 93, 1020–1028.10.1111/j.1349-7006.2002.tb02479.xSuche in Google Scholar PubMed PubMed Central
Nan, X., Tamguney, T.M., Collisson, E.A., Lin, L.J., Pitt, C., Galeas, J., Lewis, S., Gray, J.W., McCormick, F., and Chu, S. (2015). Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc. Natl. Acad. Sci. USA 112, 7996–8001.10.1073/pnas.1509123112Suche in Google Scholar PubMed PubMed Central
Nava, C., Hanna, N., Michot, C., Pereira, S., Pouvreau, N., Niihori, T., Aoki, Y., Matsubara, Y., Arveiler, B., Lacombe, D., et al. (2007). Cardio-facio-cutaneous and noonan syndromes due to mutations in the RAS/MAPK signalling pathway: genotype-phenotype relationships and overlap with Costello syndrome. J. Med. Genet. 44, 763–771.10.1136/jmg.2007.050450Suche in Google Scholar PubMed PubMed Central
Neumann, H., Peak-Chew, S.Y., and Chin, J.W. (2008). Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. Nat. Chem. Biol. 4, 232–234.10.1038/nchembio.73Suche in Google Scholar PubMed
Omholt, K., Karsberg, S., Platz, A., Kanter, L., Ringborg, U., and Hansson, J. (2002). Screening of N-ras codon 61 mutations in paired primary and metastatic cutaneous melanomas: mutations occur early and persist throughout tumor progression. Clin. Cancer Res. 8, 3468–3474.Suche in Google Scholar
Pai, E.F., Kabsch, W., Krengel, U., Holmes, K.C., John, J., and Wittinghofer, A. (1989). Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209–214.10.1038/341209a0Suche in Google Scholar
Pai, E.F., Krengel, U., Petsko, G.A., Goody, R.S., Kabsch, W., and Wittinghofer, A. (1990). Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 a resolution: implications for the mechanism of GTP hydrolysis. EMBO. J. 9, 2351–2359.10.1002/j.1460-2075.1990.tb07409.xSuche in Google Scholar
Pincus, M.R. (2004). Development of new anti-cancer peptides from conformational energy analysis of the oncogenic ras-p21 protein and its complexes with target proteins. Front. Biosci. 9, 3486–3509.10.2741/1496Suche in Google Scholar
Pylayeva-Gupta, Y., Grabocka, E., and Bar-Sagi, D. (2011). RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761–774.10.1038/nrc3106Suche in Google Scholar
Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protocols 2, 1896–1906.10.1038/nprot.2007.261Suche in Google Scholar
Rojas, A.M., Fuentes, G., Rausell, A., and Valencia, A. (2012). The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J. Cell Biol. 196, 189–201.10.1083/jcb.201103008Suche in Google Scholar
Sasaki, A.T., Carracedo, A., Locasale, J.W., Anastasiou, D., Takeuchi, K., Kahoud, E.R., Haviv, S., Asara, J.M., Pandolfi, P.P., and Cantley, L.C. (2011). Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci. Signal 4, ra13.10.1126/scisignal.2001518Suche in Google Scholar
Scheffzek, K., Ahmadian, M.R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F., and Wittinghofer, A. (1997). The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338.10.1126/science.277.5324.333Suche in Google Scholar
Scheidig, A.J., Burmester, C., and Goody, R.S. (1999). The pre-hydrolysis state of p21(ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. Structure 7, 1311–1324.10.1016/S0969-2126(00)80021-0Suche in Google Scholar
Schlichting, I., Wittinghofer, A., and Rosch, P. (1988). Proton NMR studies of the GDP.Mg2+ complex of the Ha-ras oncogene product p21. Biochem. Biophys. Res. Commun. 150, 444–448.10.1016/0006-291X(88)90540-2Suche in Google Scholar
Siegelin, M.D. and Borczuk, A.C. (2014). Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab. Invest. 94, 129–137.10.1038/labinvest.2013.147Suche in Google Scholar
Song, E.H., Oh, W., Ulu, A., Carr, H.S., Zuo, Y., and Frost, J.A. (2015). Acetylation of the RhoA GEF Net1A controls its subcellular localization and activity. J. Cell Sci. 128, 913–922.10.1242/jcs.158121Suche in Google Scholar
Sot, B., Behrmann, E., Raunser, S., and Wittinghofer, A. (2013). Ras GTPase activating (RasGAP) activity of the dual specificity GAP protein rasal requires colocalization and C2 domain binding to lipid membranes. Proc. Natl. Acad Sci. USA 110, 111–116.10.1073/pnas.1201658110Suche in Google Scholar
Spoerner, M., Nuehs, A., Ganser, P., Herrmann, C., Wittinghofer, A., and Kalbitzer, H.R. (2005). Conformational states of Ras complexed with the GTP analogue GppNHp or GppCH2p: implications for the interaction with effector proteins. Biochemistry 44, 2225–2236.10.1021/bi0488000Suche in Google Scholar
Stark, Z., Gillessen-Kaesbach, G., Ryan, M.M., Cirstea, I.C., Gremer, L., Ahmadian, M.R., Savarirayan, R., and Zenker, M. (2012). Two novel germline KRAS mutations: expanding the molecular and clinical phenotype. Clin. Genet. 81, 590–594.10.1111/j.1399-0004.2011.01754.xSuche in Google Scholar
Unni, S., Huang, Y., Hanson, R.M., Tobias, M., Krishnan, S., Li, W.W., Nielsen, J.E., and Baker, N.A. (2011). Web servers and services for electrostatics calculations with APBS and PDB2PQR. J. Comput. Chem. 32, 1488–1491.10.1002/jcc.21720Suche in Google Scholar
Vetter, I.R. and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304.10.1126/science.1062023Suche in Google Scholar
Vigil, D., Cherfils, J., Rossman, K.L., and Der, C.J. (2010). Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat. Rev. Cancer 10, 842–857.10.1038/nrc2960Suche in Google Scholar
Wan, P.T., Garnett, M.J., Roe, S.M., Lee, S., Niculescu-Duvaz, D., Good, V.M., Jones, C.M., Marshall, C.J., Springer, C.J., Barford, D., et al. (2004). Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867.10.1016/S0092-8674(04)00215-6Suche in Google Scholar
Wey, M., Lee, J., Jeong, S.S., Kim, J., and Heo, J. (2013). Kinetic mechanisms of mutation-dependent Harvey ras activation and their relevance for the development of costello syndrome. Biochemistry 52, 8465–8479.10.1021/bi400679qSuche in Google Scholar PubMed PubMed Central
Whyte, D.B., Kirschmeier, P., Hockenberry, T.N., Nunez-Oliva, I., James, L., Catino, J.J., Bishop, W.R., and Pai, J.K. (1997). K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272, 14459–14464.10.1074/jbc.272.22.14459Suche in Google Scholar PubMed
Wittinghofer, A. (2005). Signaling via GTP-binding proteins of the Ras superfamily. Febs. J. 272, 5–5.Suche in Google Scholar
Yang, M.H., Nickerson, S., Kim, E.T., Liot, C., Laurent, G., Spang, R., Philips, M.R., Shan, Y., Shaw, D.E., Bar-Sagi, D., et al. (2012). Regulation of RAS oncogenicity by acetylation. Proc. Natl. Acad. Sci. USA 109, 10843–10848.10.1073/pnas.1201487109Suche in Google Scholar PubMed PubMed Central
Yang, M.H., Laurent, G., Bause, A.S., Spang, R., German, N., Haigis, M.C., and Haigis, K.M. (2013). HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant K-RAS. Mol. Cancer Res. 11, 1072–1077.10.1158/1541-7786.MCR-13-0040-TSuche in Google Scholar PubMed PubMed Central
Yu, S.H., Wang, T.H., and Au, L.C. (2009). Specific repression of mutant K-RAS by 10-23 DNAzyme: sensitizing cancer cell to anti-cancer therapies. Biochem. Biophys. Res. Commun. 378, 230–234.10.1016/j.bbrc.2008.11.027Suche in Google Scholar PubMed
Zimmermann, G., Papke, B., Ismail, S., Vartak, N., Chandra, A., Hoffmann, M., Hahn, S.A., Triola, G., Wittinghofer, A., Bastiaens, P.I., et al. (2013). Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 497, 638–642.10.1038/nature12205Suche in Google Scholar PubMed
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: annexins in health and disease
- HIGHLIGHT: ANNEXINS IN HEALTH AND DISEASE
- Emerging functions as host cell factors – an encyclopedia of annexin-pathogen interactions
- Annexins in plasma membrane repair
- Annexin A1: shifting the balance towards resolution and repair
- Annexin A1 and resolution of inflammation: tissue repairing properties and signalling signature
- Annexins A2 and A8 in endothelial cell exocytosis and the control of vascular homeostasis
- The annexin A2 system and angiogenesis
- More than just innate affairs – on the role of annexins in adaptive immunity
- Annexins – insights from knockout mice
- Review
- Regulation of Rap GTPases in mammalian neurons
- Research Articles/Short Communications
- Protein Structure and Function
- Insights into K-Ras 4B regulation by post-translational lysine acetylation
- Cell Biology and Signaling
- MicroRNA-544 down-regulates both Bcl6 and Stat3 to inhibit tumor growth of human triple negative breast cancer
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: annexins in health and disease
- HIGHLIGHT: ANNEXINS IN HEALTH AND DISEASE
- Emerging functions as host cell factors – an encyclopedia of annexin-pathogen interactions
- Annexins in plasma membrane repair
- Annexin A1: shifting the balance towards resolution and repair
- Annexin A1 and resolution of inflammation: tissue repairing properties and signalling signature
- Annexins A2 and A8 in endothelial cell exocytosis and the control of vascular homeostasis
- The annexin A2 system and angiogenesis
- More than just innate affairs – on the role of annexins in adaptive immunity
- Annexins – insights from knockout mice
- Review
- Regulation of Rap GTPases in mammalian neurons
- Research Articles/Short Communications
- Protein Structure and Function
- Insights into K-Ras 4B regulation by post-translational lysine acetylation
- Cell Biology and Signaling
- MicroRNA-544 down-regulates both Bcl6 and Stat3 to inhibit tumor growth of human triple negative breast cancer