Home The annexin A2 system and angiogenesis
Article
Licensed
Unlicensed Requires Authentication

The annexin A2 system and angiogenesis

  • Wei Liu and Katherine A. Hajjar EMAIL logo
Published/Copyright: July 1, 2016

Abstract

The formation of new blood vessels from pre-existing vasculature, the process known as angiogenesis, is highly regulated by pro- and anti-angiogenic signaling molecules including growth factors and proteases. As an endothelial cell-surface co-receptor for plasminogen and tissue plasminogen activator, the annexin A2 (ANXA2) complex accelerates plasmin generation and facilitates fibrinolysis. Plasmin can subsequently activate a downstream proteolytic cascade involving multiple matrix metalloproteinases. Thus, in addition to maintaining blood vessel patency, the ANXA2 complex can also promote angiogenesis via its pro-fibrinolytic activity. The generation of ANXA2-deficient mice allowed us to first observe the pro-angiogenic role of ANXA2 in vivo. Further investigations have provided additional details regarding the mechanism for ANXA2 regulation of retinal and corneal angiogenesis. Other studies have reported that ANXA2 supports angiogenesis in specific tumor-related settings. Here, we summarize results from in vivo studies that illustrate the pro-angiogenic role of ANXA2, and discuss the critical questions that may lead to an advanced understanding of the molecular mechanisms for ANXA2-mediated angiogenesis. Finally, highlights from studies on ANXA2-interacting agents offer potential therapeutic opportunities for the application of ANXA2-centered pharmaceuticals in angiogenesis-related disorders.

Acknowledgments

This work was supported by grants to KAH from the National Heart, Lung, and Blood Institute (HL042493), the U.S. Department of Defense (MR130194), the March of Dimes Foundation 6-FY15-356, and the Qatar National Research Fund (5-932-3-208 and 6-736-3-187).

References

Ambartsumian, N., Klingelhofer, J., Grigorian, M., Christensen, C., Kriajevska, M., Tulchinsky, E., Georgiev, G., Berezin, V., Bock, E., Rygaard, J., et al. (2001). The metastasis-associated Mts1(S100A4) protein could act as an angiogenic factor. Oncogene 20, 4685–4695.10.1038/sj.onc.1204636Search in Google Scholar PubMed

Ambati, B.K., Nozaki, M., Singh, N., Takeda, A., Jani, P.D., Suthar, T., Albuquerque, R.J., Richter, E., Sakurai, E., Newcomb, M.T., et al. (2006). Corneal avascularity is due to soluble VEGF receptor-1. Nature 443, 993–997.10.1038/nature05249Search in Google Scholar PubMed PubMed Central

Andrae, J., Gallini, R., and Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22, 1276–1312.10.1101/gad.1653708Search in Google Scholar PubMed PubMed Central

Andrei, C., Dazzi, C., Lotti, L., Torrisi, M.R., Chimini, G., and Rubartelli, A. (1999). The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol. Biol. Cell 10, 1463–1475.10.1091/mbc.10.5.1463Search in Google Scholar PubMed PubMed Central

Andronicos, N.M., Chen, E.I., Baik, N., Bai, H., Parmer, C.M., Kiosses, W.B., Kamps, M.P., Yates, J.R., 3rd, Parmer, R.J., and Miles, L.A. (2010). Proteomics-based discovery of a novel, structurally unique, and developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface plasminogen activation. Blood 115, 1319–1330.10.1182/blood-2008-11-188938Search in Google Scholar PubMed PubMed Central

Armulik, A., Genove, G., and Betsholtz, C. (2011). Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215.10.1016/j.devcel.2011.07.001Search in Google Scholar PubMed

Asano, M.K. and Dray, P.B. (2014). Retinopathy of prematurity. Dis. Mon. 60, 282–291.10.1016/j.disamonth.2014.03.009Search in Google Scholar PubMed

Bae, S.M., Lee, C.H., Cho, Y.L., Nam, K.H., Kim, Y.W., Kim, C.K., Han, B.D., Lee, Y.J., Chun, H.J., and Ahn, W.S. (2005). Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients. Gynecol. Oncol. 99, 26–35.10.1016/j.ygyno.2005.05.041Search in Google Scholar PubMed

Bajou, K., Noel, A., Gerard, R.D., Masson, V., Brunner, N., Holst-Hansen, C., Skobe, M., Fusenig, N.E., Carmeliet, P., Collen, D., et al. (1998). Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 4, 923–928.10.1038/nm0898-923Search in Google Scholar PubMed

Becker, T., Weber, K., and Johnsson, N. (1990). Protein-protein recognition via short amphiphilic helices; a mutational analysis of the binding site of annexin II for p11. EMBO J. 9, 4207–4213.10.1002/j.1460-2075.1990.tb07868.xSearch in Google Scholar PubMed PubMed Central

Botta, A., Delteil, F., Mettouchi, A., Vieira, A., Estrach, S., Negroni, L., Stefani, C., Lemichez, E., Meneguzzi, G., and Gagnoux-Palacios, L. (2012). Confluence switch signaling regulates ECM composition and the plasmin proteolytic cascade in keratinocytes. J. Cell Sci. 125, 4241–4252.10.1242/jcs.096289Search in Google Scholar

Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature 438, 932–936.10.1038/nature04478Search in Google Scholar

Cesarman, G.M., Guevara, C.A., and Hajjar, K.A. (1994). An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA). II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation. J. Biol. Chem. 269, 21198–21203.10.1016/S0021-9258(17)31948-8Search in Google Scholar

Chen, P., Cescon, M., and Bonaldo, P. (2013). Collagen VI in cancer and its biological mechanisms. Trends Mol. Med. 19, 410–417.10.1016/j.molmed.2013.04.001Search in Google Scholar PubMed

Connor, K.M., Krah, N.M., Dennison, R.J., Aderman, C.M., Chen, J., Guerin, K.I., Sapieha, P., Stahl, A., Willett, K.L., and Smith, L.E. (2009). Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat. Protoc. 4, 1565–1573.10.1038/nprot.2009.187Search in Google Scholar PubMed PubMed Central

Das, R., Burke, T., and Plow, E.F. (2007). Histone H2B as a functionally important plasminogen receptor on macrophages. Blood 110, 3763–3772.10.1182/blood-2007-03-079392Search in Google Scholar PubMed PubMed Central

Dassah, M., Almeida, D., Hahn, R., Bonaldo, P., Worgall, S., and Hajjar, K.A. (2014). Annexin A2 mediates secretion of collagen VI, pulmonary elasticity and apoptosis of bronchial epithelial cells. J. Cell Sci. 127, 828–844.10.1242/jcs.137802Search in Google Scholar PubMed PubMed Central

Davies, B.R., O’Donnell, M., Durkan, G.C., Rudland, P.S., Barraclough, R., Neal, D.E., and Mellon, J.K. (2002). Expression of S100A4 protein is associated with metastasis and reduced survival in human bladder cancer. J. Pathol. 196, 292–299.10.1002/path.1051Search in Google Scholar PubMed

DeBin, J.A., Maggio, J.E., and Strichartz, G.R. (1993). Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. 264, C361–C369.10.1152/ajpcell.1993.264.2.C361Search in Google Scholar PubMed

Deora, A.B., Kreitzer, G., Jacovina, A.T., and Hajjar, K.A. (2004). An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface. J. Biol. Chem. 279, 43411–43418.10.1074/jbc.M408078200Search in Google Scholar PubMed

Didiasova, M., Wujak, L., Wygrecka, M., and Zakrzewicz, D. (2014). From plasminogen to plasmin: role of plasminogen receptors in human cancer. Int. J. Mol. Sci. 15, 21229–21252.10.3390/ijms151121229Search in Google Scholar

Durham, J.T. and Herman, I.M. (2011). Microvascular modifications in diabetic retinopathy. Curr. Diab. Rep. 11, 253–264.10.1007/s11892-011-0204-0Search in Google Scholar

Eble, J.A. and Niland, S. (2009). The extracellular matrix of blood vessels. Curr. Pharm. Des. 15, 1385–1400.10.2174/138161209787846757Search in Google Scholar

Ebos, J.M. and Kerbel, R.S. (2011). Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8, 210–221.10.1038/nrclinonc.2011.21Search in Google Scholar

Emoto, K., Yamada, Y., Sawada, H., Fujimoto, H., Ueno, M., Takayama, T., Kamada, K., Naito, A., Hirao, S., and Nakajima, Y. (2001). Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer 92, 1419–1426.10.1002/1097-0142(20010915)92:6<1419::AID-CNCR1465>3.0.CO;2-JSearch in Google Scholar

Falavarjani, K.G. and Nguyen, Q.D. (2013). Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond) 27, 787–794.10.1038/eye.2013.107Search in Google Scholar

Falcone, D.J., McCaffrey, T.A., Haimovitz-Friedman, A., Vergilio, J.A., and Nicholson, A.C. (1993). Macrophage and foam cell release of matrix-bound growth factors. Role of plasminogen activation. J. Biol. Chem. 268, 11951–11958.10.1016/S0021-9258(19)50292-7Search in Google Scholar

Ferenczy, A. (1998). Pathophysiology of adenomyosis. Hum. Reprod. Update 4, 312–322.10.1093/humupd/4.4.312Search in Google Scholar

Ferrara, N., Gerber, H.-P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat. Med. 9, 669–676.10.1038/nm0603-669Search in Google Scholar

Fleck, B.W. (2013). Management of retinopathy of prematurity. Arch. Dis. Child Fetal. Neonatal. Ed. 98, F454–F456.10.1136/archdischild-2013-303933Search in Google Scholar

Flood, E.C. and Hajjar, K.A. (2011). The annexin A2 system and vascular homeostasis. Vascul. Pharmacol. 54, 59–67.10.1016/j.vph.2011.03.003Search in Google Scholar

Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27–31.10.1038/nm0195-27Search in Google Scholar

Folkman, J. and Shing, Y. (1992). Angiogenesis. J. Biol. Chem. 267, 10931–10934.10.1016/S0021-9258(19)49853-0Search in Google Scholar

Gariano, R.F. and Gardner, T.W. (2005). Retinal angiogenesis in development and disease. Nature 438, 960–966.10.1038/nature04482Search in Google Scholar

Genetos, D.C., Wong, A., Watari, S., and Yellowley, C.E. (2010). Hypoxia increases Annexin A2 expression in osteoblastic cells via VEGF and ERK. Bone 47, 1013–1019.10.1016/j.bone.2010.08.024Search in Google Scholar

Gerke, V. and Moss, S.E. (2002). Annexins: from structure to function. Physiol. Rev. 82, 331–371.10.1152/physrev.00030.2001Search in Google Scholar

Gerke, V., Creutz, C.E., and Moss, S.E. (2005). Annexins: linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol. 6, 449–461.10.1038/nrm1661Search in Google Scholar

Gilbert, C. (2008). Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control. Early Hum. Dev. 84, 77–82.10.1016/j.earlhumdev.2007.11.009Search in Google Scholar

Hajjar, K.A. (1993). Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor. J. Clin. Invest. 91, 2873–2879.10.1172/JCI116532Search in Google Scholar

Hajjar, K.A. and Jacovina, A.T. (1998). Modulation of annexin II by homocysteine: implications for atherothrombosis. J. Invest. Med. 46, 364–369.Search in Google Scholar

Hajjar, K.A., Jacovina, A.T., and Chacko, J. (1994). An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J. Biol. Chem. 269, 21191–21197.10.1016/S0021-9258(17)31947-6Search in Google Scholar

Hajjar, K.A., Mauri, L., Jacovina, A.T., Zhong, F., Mirza, U.A., Padovan, J.C., and Chait, B.T. (1998). Tissue plasminogen activator binding to the annexin II tail domain. Direct modulation by homocysteine. J. Biol. Chem. 273, 9987–9993.10.1074/jbc.273.16.9987Search in Google Scholar PubMed

Han, Y., Ye, J., Dong, Y., Xu, Z., and Du, Q. (2015). Expression and significance of annexin A2 in patients with gastric adenocarcinoma and the association with E-cadherin. Exp. Ther. Med. 10, 549–554.10.3892/etm.2015.2565Search in Google Scholar PubMed PubMed Central

Hard, A.L. and Hellstrom, A. (2011). On safety, pharmacokinetics and dosage of bevacizumab in ROP treatment – a review. Acta Paediatr 100, 1523–1527.10.1111/j.1651-2227.2011.02445.xSearch in Google Scholar PubMed PubMed Central

He, K.L., Deora, A.B., Xiong, H., Ling, Q., Weksler, B.B., Niesvizky, R., and Hajjar, K.A. (2008). Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J. Biol. Chem. 283, 19192–19200.10.1074/jbc.M800100200Search in Google Scholar PubMed PubMed Central

Heissig, B., Ohki-Koizumi, M., Tashiro, Y., Gritli, I., Sato-Kusubata, K., and Hattori, K. (2012). New functions of the fibrinolytic system in bone marrow cell-derived angiogenesis. Int. J. Hematol. 95, 131–137.10.1007/s12185-012-1016-ySearch in Google Scholar PubMed

Heymans, S., Luttun, A., Nuyens, D., Theilmeier, G., Creemers, E., Moons, L., Dyspersin, G.D., Cleutjens, J.P., Shipley, M., Angellilo, A., et al. (1999). Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat. Med. 5, 1135–1142.10.1038/13459Search in Google Scholar PubMed

Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H., Oosterom, A.T.V., and Bruijn, E.A.D. (2004). Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 56, 549–580.10.1124/pr.56.4.3Search in Google Scholar PubMed

Huang, B., Deora, A.B., He, K.L., Chen, K., Sui, G., Jacovina, A.T., Almeida, D., Hong, P., Burgman, P., and Hajjar, K.A. (2011). Hypoxia-inducible factor-1 drives annexin A2 system-mediated perivascular fibrin clearance in oxygen-induced retinopathy in mice. Blood 118, 2918–2929.10.1182/blood-2011-03-341214Search in Google Scholar PubMed PubMed Central

Jacoby, D.B., Dyskin, E., Yalcin, M., Kesavan, K., Dahlberg, W., Ratliff, J., Johnson, E.W., and Mousa, S.A. (2010). Potent pleiotropic anti-angiogenic effects of TM601, a synthetic chlorotoxin peptide. Anticancer Res. 30, 39–46.Search in Google Scholar

Jacovina, A.T., Zhong, F., Khazanova, E., Lev, E., Deora, A.B., and Hajjar, K.A. (2001). Neuritogenesis and the nerve growth factor-induced differentiation of PC-12 cells requires annexin II-mediated plasmin generation. J. Biol. Chem. 276, 49350–49358.10.1074/jbc.M106289200Search in Google Scholar PubMed

Jacovina, A.T., Deora, A.B., Ling, Q., Broekman, M.J., Almeida, D., Greenberg, C.B., Marcus, A.J., Smith, J.D., and Hajjar, K.A. (2009). Homocysteine inhibits neoangiogenesis in mice through blockade of annexin A2-dependent fibrinolysis. J. Clin. Invest. 119, 3384–3394.10.1172/JCI39591Search in Google Scholar PubMed PubMed Central

Johnsson, N., Marriott, G., and Weber, K. (1988). p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino-terminal amphiphatic helix. EMBO J. 7, 2435–2442.10.1002/j.1460-2075.1988.tb03089.xSearch in Google Scholar

Katanasaka, Y., Asai, T., Naitou, H., Ohashi, N., and Oku, N. (2007). Proteomic characterization of angiogenic endothelial cells stimulated with cancer cell-conditioned medium. Biol. Pharm. Bull 30, 2300–2307.10.1248/bpb.30.2300Search in Google Scholar

Keller, M., Ruegg, A., Werner, S., and Beer, H.D. (2008). Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831.10.1016/j.cell.2007.12.040Search in Google Scholar

Kesavan, K., Ratliff, J., Johnson, E.W., Dahlberg, W., Asara, J.M., Misra, P., Frangioni, J.V., and Jacoby, D.B. (2010). Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and anti-angiogenic effects. J. Biol. Chem. 285, 4366–4374.10.1074/jbc.M109.066092Search in Google Scholar

Kube, E., Becker, T., Weber, K., and Gerke, V. (1992). Protein-protein interaction studied by site-directed mutagenesis. Characterization of the annexin II-binding site on p11, a member of the S100 protein family. J. Biol. Chem. 267, 14175–14182.10.1016/S0021-9258(19)49694-4Search in Google Scholar

Kwon, M., MacLeod, T.J., Zhang, Y., and Waisman, D.M. (2005). S100A10, annexin A2, and annexin a2 heterotetramer as candidate plasminogen receptors. Front. Biosci. 10, 300–325.10.2741/1529Search in Google Scholar PubMed

Lillis, A.P., Van Duyn, L.B., Murphy-Ullrich, J.E., and Strickland, D.K. (2008). LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol. Rev. 88, 887–918.10.1152/physrev.00033.2007Search in Google Scholar PubMed PubMed Central

Lima e Silva, R., Shen, J., Gong, Y.Y., Seidel, C.P., Hackett, S.F., Kesavan, K., Jacoby, D.B., and Campochiaro, P.A. (2010). Agents that bind annexin A2 suppress ocular neovascularization. J. Cell Physiol. 225, 855–864.10.1002/jcp.22296Search in Google Scholar PubMed PubMed Central

Lindblom, P., Gerhardt, H., Liebner, S., Abramsson, A., Enge, M., Hellstrom, M., Backstrom, G., Fredriksson, S., Landegren, U., Nystrom, H.C., et al. (2003). Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 17, 1835–1840.10.1101/gad.266803Search in Google Scholar PubMed PubMed Central

Ling, Q., Jacovina, A.T., Deora, A., Febbraio, M., Simantov, R., Silverstein, R.L., Hempstead, B., Mark, W.H., and Hajjar, K.A. (2004). Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J. Clin. Invest. 113, 38–48.10.1172/JCI19684Search in Google Scholar PubMed PubMed Central

Luo, M. and Hajjar, K.A. (2013). Annexin A2 system in human biology: cell surface and beyond. Semin. Thromb. Hemost. 39, 338–346.10.1055/s-0033-1334143Search in Google Scholar PubMed PubMed Central

Lyons, R.M., Gentry, L.E., Purchio, A.F., and Moses, H.L. (1990). Mechanism of activation of latent recombinant transforming growth factor β 1 by plasmin. J. Cell Biol. 110, 1361–1367.10.1083/jcb.110.4.1361Search in Google Scholar PubMed PubMed Central

Lyons, S.A., O’Neal, J., and Sontheimer, H. (2002). Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39, 162–173.10.1002/glia.10083Search in Google Scholar PubMed

Makanya, A.N., Hlushchuk, R., and Djonov, V.G. (2009). Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12, 113–123.10.1007/s10456-009-9129-5Search in Google Scholar PubMed

Mamelak, A.N. and Jacoby, D.B. (2007). Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Expert. Opin. Drug Deliv. 4, 175–186.10.1517/17425247.4.2.175Search in Google Scholar PubMed

Markus, H.S. (2008). Genes, endothelial function and cerebral small vessel disease in man. Exp. Physiol. 93, 121–127.10.1113/expphysiol.2007.038752Search in Google Scholar PubMed

McMahon, G.A., Petitclerc, E., Stefansson, S., Smith, E., Wong, M.K., Westrick, R.J., Ginsburg, D., Brooks, P.C., and Lawrence, D.A. (2001). Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J. Biol. Chem. 276, 33964–33968.10.1074/jbc.M105980200Search in Google Scholar PubMed

Meyerle, C.B., Chew, E.Y., and Ferris, F.L. (2008) Nonproliferative diabetic retinopathy. In: Contemporary Diabetes: Diabetic Retinopathy, E.J. Duh, ed. (New York, NY, USA: Humana Press), pp. 3–27.10.1007/978-1-59745-563-3_1Search in Google Scholar

Miles, L.A., Dahlberg, C.M., Plescia, J., Felez, J., Kato, K., and Plow, E.F. (1991). Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 30, 1682–1691.10.1021/bi00220a034Search in Google Scholar PubMed

Morozova, K., Sridhar, S., Zolla, V., Clement, C.C., Scharf, B., Verzani, Z., Diaz, A., Larocca, J.N., Hajjar, K.A., Cuervo, A.M., et al. (2015). Annexin A2 promotes phagophore assembly by enhancing Atg16L+ vesicle biogenesis and homotypic fusion. Nat. Commun. 6, 5856.10.1038/ncomms6856Search in Google Scholar PubMed PubMed Central

Netzel-Arnett, S., Mitola, D.J., Yamada, S.S., Chrysovergis, K., Holmbeck, K., Birkedal-Hansen, H., and Bugge, T.H. (2002). Collagen dissolution by keratinocytes requires cell surface plasminogen activation and matrix metalloproteinase activity. J. Biol. Chem. 277, 45154–45161.10.1074/jbc.M206354200Search in Google Scholar PubMed

Nickel, W. and Seedorf, M. (2008). Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu. Rev. Cell Dev. Biol. 24, 287–308.10.1146/annurev.cellbio.24.110707.175320Search in Google Scholar PubMed

Nishi, M., Abe, Y., Tomii, Y., Tsukamoto, H., Kijima, H., Yamazaki, H., Ohnishi, Y., Iwasaki, M., Inoue, H., Ueyama, Y., et al. (2005). Cell binding isoforms of vascular endothelial growth factor-A (VEGF189) contribute to blood flow-distant metastasis of pulmonary adenocarcinoma. Int. J. Oncol. 26, 1517–1524.10.3892/ijo.26.6.1517Search in Google Scholar PubMed

Norrby, K. (2006). In vivo models of angiogenesis. J. Cell Mol. Med. 10, 588–612.10.1111/j.1582-4934.2006.tb00423.xSearch in Google Scholar PubMed PubMed Central

Nussenzweig, S.C., Verma, S., and Finkel, T. (2015). The role of autophagy in vascular biology. Circ. Res. 116, 480–488.10.1161/CIRCRESAHA.116.303805Search in Google Scholar PubMed PubMed Central

Nygard, O., Nordrehaug, J.E., Refsum, H., Ueland, P.M., Farstad, M., and Vollset, S.E. (1997). Plasma homocysteine levels and mortality in patients with coronary artery disease. N. Engl. J. Med. 337, 230–236.10.1056/NEJM199707243370403Search in Google Scholar PubMed

Nygaard, S.J., Haugland, H.K., Kristoffersen, E.K., Lund-Johansen, M., Laerum, O.D., and Tysnes, O.B. (1998). Expression of annexin II in glioma cell lines and in brain tumor biopsies. J. Neurooncol. 38, 11–18.10.1023/A:1005953000523Search in Google Scholar

Onishi, M., Ichikawa, T., Kurozumi, K., Inoue, S., Maruo, T., Otani, Y., Fujii, K., Ishida, J., Shimazu, Y., Yoshida, K., et al. (2015). Annexin A2 regulates angiogenesis and invasion phenotypes of malignant glioma. Brain Tumor Pathol. 32, 184–194.10.1007/s10014-015-0216-6Search in Google Scholar PubMed

Otrock, Z.K., Mahfouz, R.A., Makarem, J.A., and Shamseddine, A.I. (2007). Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol. Dis. 39, 212–220.10.1016/j.bcmd.2007.04.001Search in Google Scholar PubMed

Peterson, E.A., Sutherland, M.R., Nesheim, M.E., and Pryzdial, E.L. (2003). Thrombin induces endothelial cell-surface exposure of the plasminogen receptor annexin 2. J. Cell Sci. 116, 2399–2408.10.1242/jcs.00434Search in Google Scholar PubMed

Potente, M., Gerhardt, H., and Carmeliet, P. (2011). Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887.10.1016/j.cell.2011.08.039Search in Google Scholar

Prudovsky, I. (2013). Nonclassically secreted regulators of angiogenesis. Angiol. Open Access 1, 1000101.10.4172/2329-9495.1000101Search in Google Scholar

Rabouille, C., Malhotra, V., and Nickel, W. (2012). Diversity in unconventional protein secretion. J. Cell Sci. 125, 5251–5255.10.1242/jcs.103630Search in Google Scholar

Ramos-DeSimone, N., Hahn-Dantona, E., Sipley, J., Nagase, H., French, D.L., and Quigley, J.P. (1999). Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J. Biol. Chem. 274, 13066–13076.10.1074/jbc.274.19.13066Search in Google Scholar

Rani, S.G., Mohan, S.K., and Yu, C. (2010). Molecular level interactions of S100A13 with amlexanox: inhibitor for formation of the multiprotein complex in the nonclassical pathway of acidic fibroblast growth factor. Biochemistry 49, 2585–2592.10.1021/bi9019077Search in Google Scholar

Reeves, S.A., Chavez-Kappel, C., Davis, R., Rosenblum, M., and Israel, M.A. (1992). Developmental regulation of annexin II (Lipocortin 2) in human brain and expression in high grade glioma. Cancer Res. 52, 6871–6876.Search in Google Scholar

Rety, S., Sopkova, J., Renouard, M., Osterloh, D., Gerke, V., Tabaries, S., Russo-Marie, F., and Lewit-Bentley, A. (1999). The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nat. Struct. Biol. 6, 89–95.10.1038/4965Search in Google Scholar

Rifkin, D.B., Mazzieri, R., Munger, J.S., Noguera, I., and Sung, J. (1999). Proteolytic control of growth factor availability. APMIS 107, 80–85.10.1111/j.1699-0463.1999.tb01529.xSearch in Google Scholar

Risau, W. and Flamme, I. (1995). Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73–91.10.1146/annurev.cb.11.110195.000445Search in Google Scholar

Roseman, B.J., Bollen, A., Hsu, J., Lamborn, K., and Israel, M.A. (1994). Annexin II marks astrocytic brain tumors of high histologic grade. Oncol. Res. 6, 561–567.Search in Google Scholar

Rosty, C., Ueki, T., Argani, P., Jansen, M., Yeo, C.J., Cameron, J.L., Hruban, R.H., and Goggins, M. (2002). Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am. J. Pathol. 160, 45–50.10.1016/S0002-9440(10)64347-7Search in Google Scholar

Rudland, P.S., Platt-Higgins, A., Renshaw, C., West, C.R., Winstanley, J.H., Robertson, L., and Barraclough, R. (2000). Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res. 60, 1595–1603.Search in Google Scholar

Sato, T., Wada, K., Arahori, H., Kuno, N., Imoto, K., Iwahashi-Shima, C., and Kusaka, S. (2012). Serum concentrations of bevacizumab (avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am. J. Ophthalmol. 153, 327–333.10.1016/j.ajo.2011.07.005Search in Google Scholar PubMed

Scharf, B., Clement, C.C., Wu, X.X., Morozova, K., Zanolini, D., Follenzi, A., Larocca, J.N., Levon, K., Sutterwala, F.S., Rand, J., et al. (2012). Annexin A2 binds to endosomes following organelle destabilization by particulate wear debris. Nat. Commun 3, 755.10.1038/ncomms1754Search in Google Scholar PubMed PubMed Central

Selhub, J. (1999). Homocysteine metabolism. Annu. Rev. Nutr. 19, 217–246.10.1146/annurev.nutr.19.1.217Search in Google Scholar PubMed

Semov, A., Moreno, M.J., Onichtchenko, A., Abulrob, A., Ball, M., Ekiel, I., Pietrzynski, G., Stanimirovic, D., and Alakhov, V. (2005). Metastasis-associated protein S100A4 induces angiogenesis through interaction with Annexin II and accelerated plasmin formation. J. Biol. Chem. 280, 20833–20841.10.1074/jbc.M412653200Search in Google Scholar PubMed

Sharma, M.R., Koltowski, L., Ownbey, R.T., Tuszynski, G.P., and Sharma, M.C. (2006). Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp. Mol. Pathol. 81, 146–156.10.1016/j.yexmp.2006.03.003Search in Google Scholar PubMed

Sharma, M., Blackman, M.R., and Sharma, M.C. (2012). Antibody-directed neutralization of annexin II (ANX II) inhibits neoangiogenesis and human breast tumor growth in a xenograft model. Exp. Mol. Pathol. 92, 175–184.10.1016/j.yexmp.2011.10.003Search in Google Scholar PubMed

Shimizu, A., Nakayama, H., Wang, P., Konig, C., Akino, T., Sandlund, J., Coma, S., Italiano, J.E., Jr., Mammoto, A., Bielenberg, D.R., et al. (2013). Netrin-1 promotes glioblastoma cell invasiveness and angiogenesis by multiple pathways including activation of RhoA, cathepsin B, and cAMP-response element-binding protein. J. Biol. Chem. 288, 2210–2222.10.1074/jbc.M112.397398Search in Google Scholar PubMed PubMed Central

Smith, L.E., Wesolowski, E., McLellan, A., Kostyk, S.K., D’Amato, R., Sullivan, R., and D’Amore, P.A. (1994). Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 35, 101–111.Search in Google Scholar

Staton, C.A., Reed, M.W., and Brown, N.J. (2009). A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 90, 195–221.10.1111/j.1365-2613.2008.00633.xSearch in Google Scholar PubMed PubMed Central

Thompson, W.D., Smith, E.B., Stirk, C.M., Marshall, F.I., Stout, A.J., and Kocchar, A. (1992). Angiogenic activity of fibrin degradation products is located in fibrin fragment E. J. Pathol. 168, 47–53.10.1002/path.1711680109Search in Google Scholar PubMed

Valapala, M. and Vishwanatha, J.K. (2011). Lipid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2. J. Biol. Chem. 286, 30911–30925.10.1074/jbc.M111.271155Search in Google Scholar PubMed PubMed Central

Valapala, M., Thamake, S.I., and Vishwanatha, J.K. (2011). A competitive hexapeptide inhibitor of annexin A2 prevents hypoxia-induced angiogenic events. J. Cell. Sci. 124, 1453–1464.10.1242/jcs.079236Search in Google Scholar PubMed PubMed Central

Valapala, M., Maji, S., Borejdo, J., and Vishwanatha, J.K. (2014). Cell surface translocation of annexin A2 facilitates glutamate-induced extracellular proteolysis. J. Biol. Chem. 289, 15915–15926.10.1074/jbc.M113.511550Search in Google Scholar

Visse, R., and Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827–839.10.1161/01.RES.0000070112.80711.3DSearch in Google Scholar

Whitelock, J.M., Murdoch, A.D., Iozzo, R.V., and Underwood, P.A. (1996). The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271, 10079–10086.10.1074/jbc.271.17.10079Search in Google Scholar

Yang, X., Dong, X., Jia, C., and Wang, Y. (2013). Profiling of genes associated with the murine model of oxygen-induced retinopathy. Mol. Vis. 19, 775–788.Search in Google Scholar

Yepes, M. (2015). Tissue-type plasminogen activator is a neuroprotectant in the central nervous system. Front. Cell Neurosci. 9, 304.10.3389/fncel.2015.00304Search in Google Scholar

Zhai, H., Acharya, S., Gravanis, I., Mehmood, S., Seidman, R.J., Shroyer, K.R., Hajjar, K.A., and Tsirka, S.E. (2011). Annexin A2 promotes glioma cell invasion and tumor progression. J. Neurosci. 31, 14346–14360.10.1523/JNEUROSCI.3299-11.2011Search in Google Scholar

Zhao, S., Huang, L., Wu, J., Zhang, Y., Pan, D., and Liu, X. (2009). Vascular endothelial growth factor upregulates expression of annexin A2 in vitro and in a mouse model of ischemic retinopathy. Mol. Vis. 15, 1231–1242.Search in Google Scholar

Zhao, S.H., Pan, D.Y., Zhang, Y., Wu, J.H., Liu, X., and Xu, Y. (2010). Annexin A2 promotes choroidal neovascularization by increasing vascular endothelial growth factor expression in a rat model of argon laser coagulation-induced choroidal neovascularization. Chin. Med. J. (Engl) 123, 713–721.10.3760/cma.j.issn.0366-6999.2010.06.014Search in Google Scholar

Zhou, S., Yi, T., Liu, R., Bian, C., Qi, X., He, X., Wang, K., Li, J., Zhao, X., Huang, C., et al. (2012). Proteomics identification of annexin A2 as a key mediator in the metastasis and proangiogenesis of endometrial cells in human adenomyosis. Mol. Cell Proteomics 11, M112.017988.10.1074/mcp.M112.017988Search in Google Scholar

Zhu, G., Chen, X., Mao, Y., Kang, L., Ma, X., and Jiang, Y. (2015). Characterization of annexin A2 in chicken follicle development: evidence for its involvement in angiogenesis. Anim. Reprod. Sci. 161, 104–111.10.1016/j.anireprosci.2015.08.011Search in Google Scholar

Zobiack, N., Gerke, V., and Rescher, U. (2001). Complex formation and submembranous localization of annexin 2 and S100A10 in live HepG2 cells. FEBS Lett. 500, 137–140.10.1016/S0014-5793(01)02604-7Search in Google Scholar

Received: 2016-4-5
Accepted: 2016-6-28
Published Online: 2016-7-1
Published in Print: 2016-10-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0166/html
Scroll to top button