Home Team work at its best – TAPL and its two domains
Article
Licensed
Unlicensed Requires Authentication

Team work at its best – TAPL and its two domains

  • Tina Zollmann , Christoph Bock , Philipp Graab and Rupert Abele EMAIL logo
Published/Copyright: February 25, 2015

Abstract

The transporter associated with antigen processing (TAPL, ABCB9) is a homodimeric ABC transporter, shuttling cytosolic polypeptides into the lumen of lysosomes energized by ATP hydrolysis. Here we give a short overview of the superfamily of ABC transporters and summarize the current state of knowledge on TAPL in detail. The architecture of TAPL and its substrate specificity are described and we discuss the function of an extra N-terminal transmembrane domain, called TMD0, in respect of subcellular targeting and interaction with proteins, contributing to long-term stability. As TAPL shows – besides a ubiquitous basal expression – an elevated expression in antigen presenting cells, we present models of TAPL function in adaptive immunity.


Corresponding author: Rupert Abele, Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany, e-mail:

Acknowledgments

This work was supported by the German Research Foundation via SFB807 – Transport and Communication across Membranes (R.A.) and Fond der Chemischen Industrie (T.Z. and R.A.)

References

Ambudkar, S.V., Cardarelli, C.O., Pashinsky, I., and Stein, W.D. (1997). Relation between the turnover number for vinblastine transport and for vinblastine-stimulated ATP hydrolysis by human P-glycoprotein. J. Biol. Chem. 272, 21160–21166.10.1074/jbc.272.34.21160Search in Google Scholar PubMed

Andrejewski, N., Punnonen, E.L., Guhde, G., Tanaka, Y., Lullmann-Rauch, R., Hartmann, D., von Figura, K., and Saftig, P. (1999). Normal lysosomal morphology and function in LAMP-1-deficient mice. J. Biol. Chem. 274, 12692–12701.10.1074/jbc.274.18.12692Search in Google Scholar PubMed

Bandler, P.E., Westlake, C.J., Grant, C.E., Cole, S.P., and Deeley, R.G. (2008). Identification of regions required for apical membrane localization of human multidrug resistance protein 2. Mol. Pharmacol. 74, 9–19.10.1124/mol.108.045674Search in Google Scholar PubMed

Biemans-Oldehinkel, E., Doeven, M.K., and Poolman, B. (2006). ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett. 580, 1023–1035.10.1016/j.febslet.2005.11.079Search in Google Scholar PubMed

Borst, P. and Elferink, R.O. (2002). Mammalian ABC transporters in health and disease. Annu. Rev. Biochem. 71, 537–592.10.1146/annurev.biochem.71.102301.093055Search in Google Scholar PubMed

Chan, K.W., Zhang, H., and Logothetis, D.E. (2003). N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits. EMBO J. 22, 3833–3843.10.1093/emboj/cdg376Search in Google Scholar PubMed PubMed Central

Chen, Z.S. and Tiwari, A.K. (2011). Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 278, 3226–3245.10.1111/j.1742-4658.2011.08235.xSearch in Google Scholar PubMed PubMed Central

Chicz, R.M., Urban, R.G., Gorga, J.C., Vignali, D.A., Lane, W.S., and Strominger, J.L. (1993). Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178, 27–47.10.1084/jem.178.1.27Search in Google Scholar PubMed PubMed Central

Cuervo, A.M. and Dice, J.F. (1996). A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–503.10.1126/science.273.5274.501Search in Google Scholar PubMed

Cui, J. and Davidson, A.L. (2011). ABC solute importers in bacteria. Essays Biochem. 50, 85–99.10.1042/bse0500085Search in Google Scholar PubMed

Dani, A., Chaudhry, A., Mukherjee, P., Rajagopal, D., Bhatia, S., George, A., Bal, V., Rath, S., and Mayor, S. (2004). The pathway for MHCII-mediated presentation of endogenous proteins involves peptide transport to the endo-lysosomal compartment. J. Cell Sci. 117, 4219–4230.10.1242/jcs.01288Search in Google Scholar

Davidson, A.L., Dassa, E., Orelle, C., and Chen, J. (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 317–364.10.1128/MMBR.00031-07Search in Google Scholar

Dawson, R.J. and Locher, K.P. (2006). Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185.10.1038/nature05155Search in Google Scholar

Dean, M. (2005). The genetics of ATP-binding cassette transporters. Methods Enzymol. 400, 409–429.10.1016/S0076-6879(05)00024-8Search in Google Scholar

Dean, M. and Annilo, T. (2005). Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu. Rev. Genomics Hum. Genet. 6, 123–142.10.1146/annurev.genom.6.080604.162122Search in Google Scholar

Demirel, Ö., Bangert, I., Tampé, R., and Abele, R. (2010). Tuning the cellular trafficking of the lysosomal peptide transporter TAPL by its N-terminal domain. Traffic 11, 383–393.10.1111/j.1600-0854.2009.01021.xSearch in Google Scholar

Demirel, Ö., Jan, I., Wolters, D., Blanz, J., Saftig, P., Tampé, R., and Abele, R. (2012). The lysosomal polypeptide transporter TAPL is stabilized by interaction with LAMP-1 and LAMP-2. J. Cell Sci. 125, 4230–4240.10.1242/jcs.087346Search in Google Scholar

Demirel, Ö., Waibler, Z., Kalinke, U., Grünebach, F., Appel, S., Brossart, P., Hasilik, A., Tampé, R., and Abele, R. (2007). Identification of a lysosomal peptide transport system induced during dendritic cell development. J. Biol. Chem. 282, 37836–37843.10.1074/jbc.M708139200Search in Google Scholar

Denzer, K., Kleijmeer, M.J., Heijnen, H.F., Stoorvogel, W., and Geuze, H.J. (2000). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 113, 3365–3374.10.1242/jcs.113.19.3365Search in Google Scholar

Dongre, A.R., Kovats, S., deRoos, P., McCormack, A.L., Nakagawa, T., Paharkova-Vatchkova, V., Eng, J., Caldwell, H., Yates, J.R., and Rudensky, A.Y. (2001). In vivo MHC class II presentation of cytosolic proteins revealed by rapid automated tandem mass spectrometry and functional analyses. Eur. J. Immunol. 31, 1485–1494.10.1002/1521-4141(200105)31:5<1485::AID-IMMU1485>3.0.CO;2-ASearch in Google Scholar

Eggensperger, S., Fisette, O., Parcej, D., Schäfer, L.V., and Tampé, R. (2014). An annular lipid belt is essential for allosteric coupling and viral inhibition of the antigen translocation complex TAP (transporter associated with antigen processing). J. Biol. Chem. 289, 33098–33108.10.1074/jbc.M114.592832Search in Google Scholar

Escola, J.M., Kleijmeer, M.J., Stoorvogel, W., Griffith, J.M., Yoshie, O., and Geuze, H.J. (1998). Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121–20127.10.1074/jbc.273.32.20121Search in Google Scholar

Eskelinen, E.L., Tanaka, Y., and Saftig, P. (2003). At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13, 137–145.10.1016/S0962-8924(03)00005-9Search in Google Scholar

Eytan, G.D., Regev, R., and Assaraf, Y.G. (1996). Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis. J. Biol. Chem. 271, 3172–3178.10.1074/jbc.271.6.3172Search in Google Scholar PubMed

George, A.M. and Jones, P.M. (2012). Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. Prog. Biophys. Mol. Biol. 109, 95–107.10.1016/j.pbiomolbio.2012.06.003Search in Google Scholar PubMed

Gerber, S., Comellas-Bigler, M., Goetz, B.A., and Locher, K.P. (2008). Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 321, 246–250.10.1126/science.1156213Search in Google Scholar PubMed

Henne, W.M., Buchkovich, N.J., and Emr, S.D. (2011). The ESCRT pathway. Dev. Cell 21, 77–91.10.1016/j.devcel.2011.05.015Search in Google Scholar PubMed

Jones, P.M. and George, A.M. (2004). The ABC transporter structure and mechanism: perspectives on recent research. Cell. Mol. Life Sci. 61, 682–699.10.1007/s00018-003-3336-9Search in Google Scholar PubMed

Kamakura, A., Fujimoto, Y., Motohashi, Y., Ohashi, K., Ohashi-Kobayashi, A., and Maeda, M. (2008). Functional dissection of transmembrane domains of human TAP-like (ABCB9). Biochem. Biophys. Res. Commun. 377, 847–851.10.1016/j.bbrc.2008.10.078Search in Google Scholar PubMed

Kang, J., Hwang, J.U., Lee, M., Kim, Y.Y., Assmann, S.M., Martinoia, E., and Lee, Y. (2010). PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. USA 107, 2355–2360.10.1073/pnas.0909222107Search in Google Scholar PubMed PubMed Central

Kawai, H., Tanji, T., Shiraishi, H., Yamada, M., Iijima, R., Inoue, T., Kezuka, Y., Ohashi, K., Yoshida, Y., Tohyama, K., et al. (2009). Normal formation of a subset of intestinal granules in Caenorhabditis elegans requires ATP-binding cassette transporters HAF-4 and HAF-9, which are highly homologous to human lysosomal peptide transporter TAP-like. Mol. Biol. Cell 20, 2979–2990.10.1091/mbc.e08-09-0912Search in Google Scholar PubMed PubMed Central

Kobayashi, A., Kasano, M., Maeda, T., Hori, S., Motojima, K., Suzuki, M., Fujiwara, T., Takahashi, E., Yabe, T., Tanaka, K., et al. (2000). A half-type ABC transporter TAPL is highly conserved between rodent and man, and the human gene is not responsive to interferon-gamma in contrast to TAP1 and TAP2. J. Biochem. 128, 711–718.10.1093/oxfordjournals.jbchem.a022805Search in Google Scholar PubMed

Kobayashi, A., Hori, S., Suita, N., and Maeda, M. (2003). Gene organization of human transporter associated with antigen processing-like (TAPL, ABCB9): analysis of alternative splicing variants and promoter activity. Biochem. Biophys. Res. Commun. 309, 815–822.10.1016/j.bbrc.2003.08.081Search in Google Scholar PubMed

Koch, J., Guntrum, R., Heintke, S., Kyritsis, C., and Tampé, R. (2004). Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP). J. Biol. Chem. 279, 10142–10147.10.1074/jbc.M312816200Search in Google Scholar PubMed

Koopmann, J.O., Post, M., Neefjes, J.J., Hämmerling, G.J., and Momburg, F. (1996). Translocation of long peptides by transporters associated with antigen processing (TAP). Eur. J. Immunol. 26, 1720–1728.10.1002/eji.1830260809Search in Google Scholar PubMed

Lee, M., Choi, Y., Burla, B., Kim, Y.Y., Jeon, B., Maeshima, M., Yoo, J.Y., Martinoia, E., and Lee, Y. (2008). The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat. Cell Biol. 10, 1217–1223.10.1038/ncb1782Search in Google Scholar PubMed

Leveson-Gower, D.B., Michnick, S.W., and Ling, V. (2004). Detection of TAP family dimerizations by an in vivo assay in mammalian cells. Biochemistry 43, 14257–14264.10.1021/bi0491245Search in Google Scholar PubMed

Li, L., He, S., Sun, J.M., and Davie, J.R. (2004). Gene regulation by Sp1 and Sp3. Biochem. Cell Biol. 82, 460–471.10.1139/o04-045Search in Google Scholar PubMed

Locher, K.P. (2009). Review. Structure and mechanism of ATP-binding cassette transporters. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 239–245.10.1098/rstb.2008.0125Search in Google Scholar PubMed PubMed Central

Locher, K.P., Lee, A.T., and Rees, D.C. (2002). The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098.10.1126/science.1071142Search in Google Scholar PubMed

Merzougui, N., Kratzer, R., Saveanu, L., and van Endert, P. (2011). A proteasome-dependent, TAP-independent pathway for cross-presentation of phagocytosed antigen. EMBO Rep. 12, 1257–1264.10.1038/embor.2011.203Search in Google Scholar PubMed PubMed Central

Mizushima, N. and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823–830.10.1038/ncb0910-823Search in Google Scholar PubMed PubMed Central

Neumann, L. and Tampé, R. (1999). Kinetic analysis of peptide binding to the TAP transport complex: evidence for structural rearrangements induced by substrate binding. J. Mol. Biol. 294, 1203–1213.10.1006/jmbi.1999.3329Search in Google Scholar PubMed

Nishimura, M. and Naito, S. (2005). Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab. Pharmacokinet. 20, 452–477.10.2133/dmpk.20.452Search in Google Scholar PubMed

Nürenberg, E. and Tampé, R. (2013). Tying up loose ends: ribosome recycling in eukaryotes and archaea. Trends Biochem. Sci. 38, 64–74.10.1016/j.tibs.2012.11.003Search in Google Scholar PubMed

Oldham, M.L., Khare, D., Quiocho, F.A., Davidson, A.L., and Chen, J. (2007). Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521.10.1038/nature06264Search in Google Scholar PubMed

Parcej, D. and Tampé, R. (2010). ABC proteins in antigen translocation and viral inhibition. Nat. Chem. Biol. 6, 572–580.10.1038/nchembio.410Search in Google Scholar PubMed

Patzlaff, J.S., van der Heide, T., and Poolman, B. (2003). The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278, 29546–29551.10.1074/jbc.M304796200Search in Google Scholar PubMed

Powis, S.J., Townsend, A.R., Deverson, E.V., Bastin, J., Butcher, G.W., and Howard, J.C. (1991). Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature 354, 528–531.10.1038/354528a0Search in Google Scholar PubMed

Ramos, M.S., Abele, R., Nagy, R., Grotemeyer, M.S., Tampé, R., Rentsch, D., and Martinoia, E. (2011). Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles. J. Exp. Bot. 62, 2403–2410.10.1093/jxb/erq397Search in Google Scholar PubMed

Rice, A.J., Park, A., and Pinkett, H.W. (2014). Diversity in ABC transporters: Type I, II and III importers. Crit. Rev. Biochem. Mol. Biol. 49, 426–437.10.3109/10409238.2014.953626Search in Google Scholar

Rudensky, AYu, Preston-Hurlburt, P., Hong, S.C., Barlow, A., and Janeway, C.A. (1991). Sequence analysis of peptides bound to MHC class II molecules. Nature 353, 622–627.10.1038/353622a0Search in Google Scholar

Schmitt, L. and Tampé, R. (2002). Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol. 12, 754–760.10.1016/S0959-440X(02)00399-8Search in Google Scholar

Schuette, V. and Burgdorf, S. (2014). The ins-and-outs of endosomal antigens for cross-presentation. Curr. Opin. Immunol. 26, 63–68.10.1016/j.coi.2013.11.001Search in Google Scholar PubMed

Sun, H. (2012). Membrane receptors and transporters involved in the function and transport of vitamin A and its derivatives. Biochim. Biophys. Acta 1821, 99–112.10.1016/j.bbalip.2011.06.010Search in Google Scholar PubMed PubMed Central

Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E.L., Hartmann, D., Lullmann-Rauch, R., Janssen, P.M., Blanz, J., von Figura, K., and Saftig, P. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902–906.10.1038/35022595Search in Google Scholar PubMed

Tanji, T., Nishikori, K., Shiraishi, H., Maeda, M., and Ohashi-Kobayashi, A. (2013). Co-operative function and mutual stabilization of the half ATP-binding cassette transporters HAF-4 and HAF-9 in Caenorhabditis elegans. Biochem. J. 452, 467–475.10.1042/BJ20130115Search in Google Scholar PubMed

Tanno, H. and Komada, M. (2013). The ubiquitin code and its decoding machinery in the endocytic pathway. J. Biochem. 153, 497–504.10.1093/jb/mvt028Search in Google Scholar PubMed

Tarling, E.J., de Aguiar Vallim, T.Q., and Edwards, P.A. (2013). Role of ABC transporters in lipid transport and human disease. Trends Endocrinol. Metab. 24, 342–350.10.1016/j.tem.2013.01.006Search in Google Scholar PubMed PubMed Central

ter Beek, J., Guskov, A., and Slotboom, D.J. (2014). Structural diversity of ABC transporters. J. Gen. Physiol. 143, 419–435.10.1085/jgp.201411164Search in Google Scholar PubMed PubMed Central

Thiele, F., Tao, S., Zhang, Y., Muschaweckh, A., Zollmann, T., Protzer, U., Abele, R., and Drexler, I. (2015). Modified vaccinia virus Ankara-infected dendritic cells present CD4+ T-cell epitopes by endogenous major histocompatibility complex class II presentation pathways. J. Virol. 89, 2698–2709.10.1128/JVI.03244-14Search in Google Scholar

Uebel, S., Kraas, W., Kienle, S., Wiesmuller, K.H., Jung, G., and Tampé, R. (1997). Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. Proc. Natl. Acad. Sci. USA 94, 8976–8981.10.1073/pnas.94.17.8976Search in Google Scholar

Uinuk-ool, T.S., Mayer, W.E., Sato, A., Takezaki, N., Benyon, L., Cooper, M.D., and Klein, J. (2003). Identification and characterization of a TAP-family gene in the lamprey. Immunogenetics 55, 38–48.10.1007/s00251-003-0548-ySearch in Google Scholar

van Endert, P.M., Tampé, R., Meyer, T.H., Tisch, R., Bach, J.-F., and McDevitt, H.O. (1994). A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity 1, 491–500.10.1016/1074-7613(94)90091-4Search in Google Scholar

Virgin, H.W. and Levine, B. (2009). Autophagy genes in immunity. Nat. Immunol. 10, 461–470.10.1038/ni.1726Search in Google Scholar

Wolters, J.C., Abele, R., and Tampé, R. (2005). Selective and ATP-dependent translocation of peptides by the homodimeric ATP binding cassette transporter TAP-like (ABCB9). J. Biol. Chem. 280, 23631–23636.10.1074/jbc.M503231200Search in Google Scholar

Yamaguchi, Y., Kasano, M., Terada, T., Sato, R., and Maeda, M. (1999). An ABC transporter homologous to TAP proteins. FEBS Lett. 457, 231–236.10.1016/S0014-5793(99)01042-XSearch in Google Scholar

Yamaguchi, Y., Iseoka, H., Kobayashi, A., and Maeda, M. (2004). The carboxyl terminal sequence of rat transporter associated with antigen processing (TAP)-like (ABCB9) is heterogeneous due to splicing of its mRNA. Biol. Pharm. Bull. 27, 100–104.10.1248/bpb.27.100Search in Google Scholar PubMed

Zhang, P. (2013). Structure and mechanism of energy-coupling factor transporters. Trends Microbiol. 21, 652–659.10.1016/j.tim.2013.09.009Search in Google Scholar PubMed

Zhang, F., Zhang, W., Liu, L., Fisher, C.L., Hui, D., Childs, S., Dorovini-Zis, K., and Ling, V. (2000). Characterization of ABCB9, an ATP binding cassette protein associated with lysosomes. J. Biol. Chem. 275, 23287–23294.10.1074/jbc.M001819200Search in Google Scholar PubMed

Zhao, C., Tampé, R., and Abele, R. (2006). TAP and TAP-like – brothers in arms? Naunyn-Schmiedeberg’s Arch. Pharmacol. 372, 444–450.Search in Google Scholar

Zhao, C., Haase, W., Tampé, R., and Abele, R. (2008). Peptide specificity and lipid activation of the lysosomal transport complex ABCB9 (TAPL). J. Biol. Chem. 283, 17083–17091.10.1074/jbc.M801794200Search in Google Scholar PubMed

Zollmann, T., Moiset, G., Tumulka, F., Tampé, R., Poolman, B., and Abele, R. (2015). Single liposome analysis of peptide translocation by the ABC transporter TAPL. Proc. Natl. Acad. Sci. USA 112, 2046–2051.10.1073/pnas.1418100112Search in Google Scholar PubMed PubMed Central

Received: 2014-12-23
Accepted: 2015-2-20
Published Online: 2015-2-25
Published in Print: 2015-9-1

©2015 by De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. Meeting Report
  3. Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
  4. HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
  5. Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
  6. Team work at its best – TAPL and its two domains
  7. The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
  8. Extending native mass spectrometry approaches to integral membrane proteins
  9. Functional diversity of the superfamily of K+ transporters to meet various requirements
  10. The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
  11. Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
  12. Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
  13. The transporter associated with antigen processing: a key player in adaptive immunity
  14. The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
  15. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
  16. A universal mechanism for transport and regulation of CPA sodium proton exchangers
  17. Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
  18. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
  19. Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
  20. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
  21. The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
  22. Functional properties of LptA and LptD in Anabaena sp. PCC 7120
Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2014-0319/html?lang=en
Scroll to top button