Home DNA barcoding authentication for the wood of eight endangered Dalbergia timber species using machine learning approaches
Article
Licensed
Unlicensed Requires Authentication

DNA barcoding authentication for the wood of eight endangered Dalbergia timber species using machine learning approaches

  • Tuo He , Lichao Jiao , Min Yu , Juan Guo , Xiaomei Jiang and Yafang Yin
Published/Copyright: September 18, 2018
Become an author with De Gruyter Brill

Abstract

Reliable wood identification and proof of the provenance of trees is the first step for combating illegal logging. DNA barcoding belongs to the promising tools in this regard, for which reliable methods and reference libraries are needed. Machine learning approaches (MLAs) are tailored to the necessities of DNA barcoding, which are based on mathematical multivaried analysis. In the present study, eight Dalbergia timber species were investigated in terms of their DNA sequences focusing on four barcodes (ITS2, matK, trnH-psbA and trnL) by means of the MLAs BLOG and WEKA for wood species identification. The data material downloaded from NCBI (288 sequences) and taken from a previous study of the authors (153 DNA sequences) was taken as dataset for calibration. The MLAs’ effectivity was verified through identification of non-vouchered wood specimens. The results indicate that the SMO classifier as part of the WEKA approach performed the best (98%~100%) for discriminating the eight Dalbergia timber species. Moreover, the two-locus combination ITS2+trnH-psbA showed the highest success rate. Furthermore, the non-vouchered wood specimens were successfully identified by means of ITS2+trnH-psbA with the SMO classifier. The MLAs are successful in combi- nation with DNA barcode reference libraries for the identification of endangered Dalbergia timber species.

Acknowledgments

We express our gratitude to Dr. Alex C. Wiedenhoeft and Dr. Prabu Ravindran of Forest Products Laboratory, USA, for their assistance and suggestions on machine learning analysis. We also wish to acknowledge the language editing work done by Kevin Austin of BizTech English AB (http://www.biztech.se).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by National Natural Science Foundation of China, Funder Id: 10.13039/501100001809 (Grant No. 31600451), the Fundamental Research Funds of Chinese Academy of Forestry, Funder Id: 10.13039/501100004543 (Grant No. CAFYBB2017ZE003), and the China Scholarship Council (Grant No. 2017-3109).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.10.1093/nar/25.17.3389Search in Google Scholar PubMed PubMed Central

Benavoli, A., Corani, G., Demsar, J., Zaffalon, M. (2017) Time for a change: a tutorial for comparing multiple classifier through Bayesian analysis. J. Mach. Learn. Res. 18:1–36.Search in Google Scholar

Bergsten, J., Bilton, D., Fujisawa, T., Elliott, M., Monaghan, M.T., Balke, M., Hendrich, L., Geijer, J., Herrmann, J., Foster, G.N., Ribera, I., Nilsson, A.N., Barrraclogh, T., Vogler, A.P. (2012) The effect of geographical scale of sampling on DNA barcoding. Syst. Biol. 61:851–869.10.1093/sysbio/sys037Search in Google Scholar PubMed PubMed Central

Bertolazzi, P., FeliciEmail, G., Weitschek, E. (2009) Learning to classify species with barcodes. BMC Bioinformatics 10:S7.10.1186/1471-2105-10-S14-S7Search in Google Scholar PubMed PubMed Central

Bhargava, N., Sharma, G., Bhargava, R., Mathuria, M. (2013) Decision tree analysis on J48 algorithm for data mining. Int. J. Adv. Res. Com. Sci. Softw. Eng. 3:1114–1119.Search in Google Scholar

Bolson, M., Smidt, E.C., Brotto, M.L., Pereira, V.S. (2015) ITS and trnH-psbA as efficient DNA barcodes to identify threatened commercial woody angiosperms from southern Brazilian Atlantic rainforests. PLoS One 10:e0143049.10.1371/journal.pone.0143049Search in Google Scholar PubMed PubMed Central

Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., Scuse, D. (2015) WEKA manual for version 3-6-13. https://vivacquabd.webnode.com.br/_files/200000130-90463913fe/WekaManual-3-6-13.pdf.Search in Google Scholar

CBOL Plant Working Group. (2009) A DNA barcode for land plants. PNAS 106:12794–12797.10.1073/pnas.0905845106Search in Google Scholar PubMed PubMed Central

Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia, X., Lin, Y., Leon, C. (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613.10.1371/journal.pone.0008613Search in Google Scholar PubMed PubMed Central

China Plant BOL Group. (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plant. PNAS 49:19641–19646.10.1073/pnas.1104551108Search in Google Scholar PubMed PubMed Central

Collions, R.A., Cruickshank, R.H. (2012) The seven deadly sins of DNA barcoding. Mol. Ecol. Resour. 13:969–975.10.1111/1755-0998.12046Search in Google Scholar PubMed

Collins, R.A., Boykin, L.M., Cruickshank, R.H., Armstrong, K.F. (2012) Barcoding’s next top model: an evaluation of nucleotide substitution models for specimen identification. Meth. Ecol. Evol. 3:457–465.10.1111/j.2041-210X.2011.00176.xSearch in Google Scholar

Convention on International Trade in Endangered Species of Wild Fauna and Flora. (2017) The CITES Species. https://www.cites.org/eng/disc/species.php. Accessed 15th Nov 2017.Search in Google Scholar

Damm, S., Schierwater, B., Hadrys, H. (2010) An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology. Mol. Ecol. 19:3881–3893.10.1111/j.1365-294X.2010.04720.xSearch in Google Scholar PubMed

Dormontt, E.E., Boner, K., Braun, B., Breulmann, G., Degen, B., Espinoza, E., Gardner, S., Guillery, P., Hermanson, J.C., Koch, G., Lee, S.L., Kanashiro, M., Rimbawanto, A., Thomas, D., Wiedenhoeft, A.C., Yin, Y., Zahnenq, J., Lowe, A.J. (2015) Forensic timber identification: it’s time to integrate disciplines to combat illegal logging. Biol. Conserv. 191:790–798.10.1016/j.biocon.2015.06.038Search in Google Scholar

Duchêne, S., Duchêne, D., Giallonardo, F., Eden, J., Geoghegan, J., Holt, K., Ho, S., Holmes, E. (2016) Cross-validation to select Bayesian hierarchical models in phylogenetics. BMC Evol. Biol. 16:115.10.1186/s12862-016-0688-ySearch in Google Scholar PubMed PubMed Central

Ekrema, T., Willassen, E., Stura, E. (2007) A comprehensive DNA sequence library is essential for identification with DNA barcodes. Mol. Phylogenet. Evol. 43:530–542.10.1016/j.ympev.2006.11.021Search in Google Scholar PubMed

Fazekas, A.J., Kesanakurti, P.R., Burgess, K.S., Percy, D.M., Graham, S.W., Barrett, S.C., Newmaster, S.G., Hajibabaei, M., Husband, B.C. (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Mol. Ecol. Resour. 9:130–139.10.1111/j.1755-0998.2009.02652.xSearch in Google Scholar PubMed

Frank, E., Hall, M., Trigg, L., Holmes, G., Witten, I.H. (2004) Data mining in bioinformatics using WEKA. Bioinformatics 20:2479–2481.10.1093/bioinformatics/bth261Search in Google Scholar PubMed

Gao, L., Li, Y., Phan, L., Yan, L., Thomas, P., Phan, L., Möller, M., Li, D. (2017) DNA barcoding of East Asian Amentotaxus (Taxaceae): potential new species and implications for conservation. J. Syst. Evol. 55:16–24.10.1111/jse.12207Search in Google Scholar

Gasson, P. (2011) How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially CITES. IAWA J. 32:137–154.10.1163/22941932-90000049Search in Google Scholar

Gasson, P., Bass, P., Wheeler, E. (2011) Wood anatomy of CITES-listed tree species. IAWA J. 32:155–198.10.1163/22941932-90000050Search in Google Scholar

Goldberg, D.E., Holland, J.H. (1988) Genetic algorithms and machine learning. Mach. Learn. 3:95–99.10.1023/A:1022602019183Search in Google Scholar

Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., Hebert, P.D.N. (2006) DNA barcodes distinguish species of tropical Lepidoptera. PNAS 103:968–971.10.1073/pnas.0510466103Search in Google Scholar PubMed PubMed Central

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H. (2009) The WEKA data mining software: an update. SIGKDD Explor. 11:10–18.10.1145/1656274.1656278Search in Google Scholar

Hartvig, I., Czako, M., Kjaer, E.D., Nielsen, L.R., Theilade, I. (2015) The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). PLoS One 10:e0138231.10.1371/journal.pone.0138231Search in Google Scholar PubMed PubMed Central

Hassold, S., Lowry, P.P., Bauert, M.R., Razafintsalama, A., Ramamonjisoa, L., Widmer, A. (2016) DNA barcoding of Malagasy rosewoods: towards a molecular identification of CITES-listed Dalbergia species. PLoS One 11:e0157881.10.1371/journal.pone.0157881Search in Google Scholar PubMed PubMed Central

Hebert, P.D.N., Cywinska, A., Ball, S.L., Dewaard, J.R. (2003) Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270:313–321.10.1098/rspb.2002.2218Search in Google Scholar PubMed PubMed Central

Huelsenbeck, J.P., Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 27:754–755.10.1093/bioinformatics/17.8.754Search in Google Scholar PubMed

Jiao, L., Yin, Y., Cheng, Y., Jiang, X. (2014) DNA barcoding for identification of the endangered species Aquilaria sinensis: comparison of data from heated or aged samples. Holzforschung 68:487–494.10.1515/hf-2013-0129Search in Google Scholar

Jiao, L., Yu, M., Wiedenhoeft, A.C., He, T., Li, J., Liu, B., Jiang, X., Yin, Y. (2018) DNA barcode authentication and library development for the wood of six commercial Pterocarpus species: the critical role of xylarium specimens. Sci. Rep. 8:1945.10.1038/s41598-018-20381-6Search in Google Scholar PubMed PubMed Central

Jordan, M.I., Mitchell, T.M. (2015) Machine learning: trends, perspectives, and prospects. Science 349:255–260.10.1126/science.aaa8415Search in Google Scholar PubMed

Kolaczkowski, B., Thornton, J.W. (2004) Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431:980–984.10.1038/nature02917Search in Google Scholar PubMed

Kress, W.J., Erickson, D.L. (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2:e508.10.1371/journal.pone.0000508Search in Google Scholar PubMed PubMed Central

Kress, W.J., Wurdack, K.J., Zimmer, E.A., Weigt, L.A., Janzen, D.H. (2005) Use of DNA barcodes to identify flowering plants. PNAS 102:8369–8374.10.1073/pnas.0503123102Search in Google Scholar PubMed PubMed Central

Kuksa, P., Pavlovic, V. (2009) Efficient alignment-free DNA barcode analytics. BMC Bioinformatics 10:S9.10.1186/1471-2105-10-S14-S9Search in Google Scholar PubMed PubMed Central

Lewis, D.D. (1998) Naïve (Bayes) at forty: the independence assumption in information retrieval. Mach. Learn. 98:4–15.10.1007/BFb0026666Search in Google Scholar

Li, Q., Wu, J., Wang, Y., Lian, X., Wu, F., Zhou, L., Huang, Z., Zhu, S. (2017) The phylogenetic analysis of Dalbergia (Fabaceae: Papilionaceae) based on different DNA barcodes. Holzforschung 71:939–949.10.1515/hf-2017-0052Search in Google Scholar

Little, D.P., Stevenson, D.W. (2007) A comparison of algorithms for the identification of specimens using DNA barcodes: examples from gymnosperms. Cladistics 3:1–21.10.1111/j.1096-0031.2006.00126.xSearch in Google Scholar PubMed

Lou, M., Golding, G.B. (2010) Assigning sequences to species in the absence of large interspecific differences. Mol. Phylogenet. Evol. 56:187–194.10.1016/j.ympev.2010.01.002Search in Google Scholar PubMed

Lowe, A.J., Cross, H. (2011) The application of DNA methods to timber tracking and origin verification. IAWA J. 32:251–262.10.1163/22941932-90000055Search in Google Scholar

Lowe, A.J., Dormontt, E.E., Bowie, M.J., Degen, B., Gardner, S., Thomas, D., Clarke, C., Rimbawanto, A., Wiedenhoeft, A.C., Yin, Y. (2016) Opportunities for improved transparency in the timber trade through scientific verification. Bioscience 66:990–998.10.1093/biosci/biw129Search in Google Scholar

Lowenstein, J.H., Amato, G., Kolokotronis, S. (2009) The real maccoyii: identification tuna sushi with DNA barcodes-contrasting characteristic attributes and genetic distances. PLoS One 4:e7866.10.1371/journal.pone.0007866Search in Google Scholar PubMed PubMed Central

MacLeod, N., Benfield, M., Culverhouse, P. (2010) Time to automate identification. Nature 467:154–155.10.1038/467154aSearch in Google Scholar PubMed

McArdle, B.H., Anderson, M.J. (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297.10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2Search in Google Scholar

McHardy, A.C., Martín, H.G., Tsirigos, A., Hugenholtz, P., Rigoutsos, I. (2007) Accurate phylogenetic classification of variable-length DNA fragments. Nat. Methods 4:63–72.10.1038/nmeth976Search in Google Scholar

Meier, R., Shiyang, K., Vaidya, G., Peter, K.L.N. (2006) DNA Barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst. Biol. 55:715–728.10.1080/10635150600969864Search in Google Scholar

More, R.P., Mane, R.C., Purohit, H.J. (2016) MatK-QR classifier: a patterns based approach for plant species identification. Biodata Min. 9:39.10.1186/s13040-016-0120-6Search in Google Scholar

Munch, K., Boomsma, W., Huelsenbeck, J.P., Willerslev, E., Nielsen R. (2008) Statistical assignment of DNA sequences using Bayesian phylogenetics. Syst. Biol. 57:750–757.10.1080/10635150802422316Search in Google Scholar

NCBI Resource Coordinators. (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44:7–19.10.1093/nar/gkv1290Search in Google Scholar

Nithaniyal, S., Newmaster, S.G., Ragupathy, S., Krishnamoorthy, D., Vassou, S.L., Parani, M. (2014) DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of India. PLoS One 9:e107669.10.1371/journal.pone.0107669Search in Google Scholar

Pang, X., Liu, C., Shi, L., Liu, R., Liang, D., Li, H., Cherny, S.S., Chen, S. (2012) Utility of the trnH-psbA intergenic spacer region and its combinations as plant DNA barcodes: a meta-analysis. PLoS One 7:e48833.10.1371/journal.pone.0048833Search in Google Scholar

Patil, T.R., Sherekar, S.S. (2013) Performance analysis of Naïve Bayes and J48 classification algorithm for data classification. Int. J. Comput. Sci. Appl. 6:256–261.Search in Google Scholar

Puillandre, N., Bouchet, P., Boisselier-Dubayle, M.C., Brisset, J., Buge, B., Castelin, M., Chagnoux, S., Christophe, T., Corbari, L., Lambourdiere, J., Lozouet, P., Marani, G., Rivasseau, A., Silva, N., Terryn, Y., Tillier, S., Utge, J., Samadi, S. (2012) New taxonomy and old collections: integrating DNA barcoding into the collection curation process. Mol. Ecol. Resour. 12:396–402.10.1111/j.1755-0998.2011.03105.xSearch in Google Scholar

Quinlan, J.R. (1996) Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4:77–90.10.1613/jair.279Search in Google Scholar

Rach, J., DeSalle, R., Sarkar, I.N., Schierwater, B., Hadrys, H. (2008) Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc. R. Soc. B 275:237–247.10.1098/rspb.2007.1290Search in Google Scholar PubMed PubMed Central

Robert, C. (2014) Machine learning, a probabilistic perspective. Chance 27:62–63.10.1080/09332480.2014.914768Search in Google Scholar

Ronquist, F., Huelsenbeck, J.P. (2003) Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.10.1093/bioinformatics/btg180Search in Google Scholar PubMed

Saitou, N., Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425.Search in Google Scholar

Sarkar, I.N., Planet, P.L., Desalle, R. (2008) CAOS software for use in character-based DNA barcoding. Mol. Ecol. Resour. 8:1256–1259.10.1111/j.1755-0998.2008.02235.xSearch in Google Scholar PubMed

Shahzad, W., Asad, S., Khan, M.A. (2013) Feature subset selection using association rule mining and JRip classifier. Int. J. Phys. Sci. 8:885–896.10.5897/IJPS2013.3842Search in Google Scholar

Smith, T.C., Frank, E. (2016) Introducing machine learning concepts with WEKA. Meth. Mol. Biol. 1418:353–378.10.1007/978-1-4939-3578-9_17Search in Google Scholar PubMed

Srivathsan, A., Meier, R. (2011) On the inappropriate use of Kimura-2- parameter (K2P) divergences in the DNA barcoding literature. Cladistics 28:190–194.10.1111/j.1096-0031.2011.00370.xSearch in Google Scholar PubMed

Suykens, J.A.K., Vandewalle, J. (1999) Least squares support vector machine classifiers. Neural Process. Lett. 9:293–300.10.1023/A:1018628609742Search in Google Scholar

Tanabe, A.S., Toju, H. (2013) Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi and land plants. PLoS One 8:e76910.10.1371/journal.pone.0076910Search in Google Scholar PubMed PubMed Central

The Plant List Version 1.1. (2013) http://www.theplantlist.org/. Accessed 15th Nov 2017.Search in Google Scholar

United Nations Office on Drugs and Crime. (2016) Best practice guide for forensic timber identification. https://www.unodc.org/documents/Wildlife/Guide_Timber.pdf.Search in Google Scholar

Velzen, R.V., Weitschek, E., Felici, G., Bakker, F.T. (2012) DNA barcoding of recently diverged species: relative performance of matching methods. PLoS One 7:e30490.10.1371/journal.pone.0030490Search in Google Scholar PubMed PubMed Central

Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.M. (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73:5261–5267.10.1128/AEM.00062-07Search in Google Scholar PubMed PubMed Central

Weitschek, E., Velzen, R., Felici, G., Bertolazzi, P. (2013) BLOG 2.0: a software system for character-based species classification with DNA Barcode sequences. What it does, how to use it? Mol. Ecol. Resour. 13:1043–1046.10.1111/1755-0998.12073Search in Google Scholar PubMed

Weitschek, E., Fiscon, G., Felici, G. (2014) Supervised DNA Barcodes species classification: analysis, comparisons and results. Biodata Min. 7:4.10.1186/1756-0381-7-4Search in Google Scholar PubMed PubMed Central

Wiedenhoeft, A.C. (2014) Curating xylaria. In: Curating Biocultural Collections: A Handbook. Eds. Salick, J., Konchar, K., Nesbitt, M. Kew Publishing in Association with Missouri Botanical Garden, UK. pp. 127–134.Search in Google Scholar

Xu, C., Dong, W., Shi, S., Cheng, T., Li, C., Liu, Y., Wu, P., Wu, H., Gao, P., Zhou, S. (2015) Accelerating plant DNA barcode reference library construction using herbarium specimens: improved experimental techniques. Mol. Ecol. Resour. 15:1366–1374.10.1111/1755-0998.12413Search in Google Scholar PubMed

Yan, L., Liu, J., Möller, M., Zhang, L., Zhang, X., Li, D., Gao, L. (2015) DNA barcoding of Rhododendron (Eeicaceae), the largest Chinese plant genus in biodiversity hotspots of the Himalaya-Hengduan Mountains. Mol. Ecol. Resour. 15:932–944.10.1111/1755-0998.12353Search in Google Scholar PubMed

Yang, J., Vázquez, L., Chen, X., Li, H., Zhang, H., Liu, Z., Zhao, G. (2017) Development of chloroplast and nuclear DNA markers for Chinese oaks (Quercus subgenus Quercus) and assessment of their utility as DNA barcodes. Front. Plant Sci. 8:816.10.3389/fpls.2017.00816Search in Google Scholar PubMed PubMed Central

Yassina, A., Markow, T.A., Narechania, A., O’Grady, P.M., DeSallea, R. (2010) The genus Drosophila as a model for testing tree- and character-based methods of species identification using DNA barcoding. Mol. Phylogenet. Evol. 57:509–517.10.1016/j.ympev.2010.08.020Search in Google Scholar PubMed

Yu, Z., Li, Q., Kong, L., Yu, H. (2015) Utility of DNA barcoding for Tellinoidea: a comparison of distance, coalescent and character-based methods on multiple genes. Mar. Biotechnol. 17:55–65.10.1007/s10126-014-9596-6Search in Google Scholar PubMed

Yu, M., Liu, K., Zhou, L., Liu, S. (2016) Testing three proposed DNA barcodes for the wood identification of Dalbergia odorifera T. Chen and Dalbergia tonkinensis Prain. Holzforschung 70:127–136.10.1515/hf-2014-0234Search in Google Scholar

Yu, M., Jiao, L., Guo, J., Wiedenhoeft, A.C., He, T., Jiang, X., Yin, Y. (2017) DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species. Planta 246:1165–1176.10.1007/s00425-017-2758-9Search in Google Scholar PubMed

Zhang, A., Sikes, D.S., Muster, C., Li, S.Q. (2008). Inferring species membership using DNA sequences with back-propagation neural networks. Syst. Biol. 57:202–215.10.1080/10635150802032982Search in Google Scholar PubMed

Zhang, C., Wang, F., Yan, H., Hao, G., Hu, C. (2011) Testing DNA barcoding in closely related groups of Lysimachia L. (Myrinaceae). Mol. Ecol. Resour. 12:98–108.10.1111/j.1755-0998.2011.03076.xSearch in Google Scholar PubMed

Zhang, A., Feng, J., Ward, R.D., Wan, P., Gao, Q., Wu, J., Zhao, W. (2012a) A new method for species identification via protein-coding and non-coding DNA barcodes by combining machine learning with bioinformatics methods. PLoS One 7:e30986.10.1371/journal.pone.0030986Search in Google Scholar PubMed PubMed Central

Zhang, A., Muster, C., Liang, H., Zhu, C., Crozier, R., Wan, P., Feng, J. (2012b) A fuzzy-set-theory-based approach to analysis species membership in DNA barcoding. Mol. Ecol. 21:1848–1863.10.1111/j.1365-294X.2011.05235.xSearch in Google Scholar PubMed

Zou, S., Li, Q., Kong, L., Yu, H., Zheng, X. (2011) Comparing the usefulness of distance, monophyly and character-based DNA barcoding methods in species identification: a case study of Neogastropoda. PLoS One 6:e26619.10.1371/journal.pone.0026619Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hf-2018-0076).


Received: 2018-04-06
Accepted: 2018-08-15
Published Online: 2018-09-18
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorials
  3. Editorial changes at Holzforschung
  4. Goodbye to Holzforschung
  5. Thanks to Oskar Faix
  6. Original Articles
  7. Orthotropic mechano-sorptive creep behavior of Chinese fir during the moisture adsorption process determined in tensile mode via dynamic mechanical analysis (DMA)
  8. Differences in the viscoelastic properties between earlywood and latewood in the growth rings of Chinese fir as analyzed by dynamic mechanical analysis (DMA) in the temperature range between −120°C and 120°C
  9. Failure conditions of solid wood on off-axis compression testing
  10. Effect of knots and holes on the modulus of elasticity prediction and mapping of sugi (Cryptomeria japonica) veneer using near-infrared hyperspectral imaging (NIR-HSI)
  11. Quantification of slip planes in the stem wood of Eucalyptus grandis
  12. DNA barcoding authentication for the wood of eight endangered Dalbergia timber species using machine learning approaches
  13. Chemical analysis and antioxidant activities of bark extracts from four endemic species of Hyrcanian forests in Iran
  14. Isolation of natural flavoring compounds from cooperage woods by pressurized hot water extraction (PHWE)
  15. Volatile organic compounds (VOCs) from lauan (Shorea ssp.) plyboard prepared with kraft lignin, soy flour, gluten meal and tannin: emissions during hot pressing and from panels as a function of time
  16. Plasma treatment of plastic film or decorative veneer and its effects on the peel strength and curling deformation of plastic film-reinforced pliable decorative sliced veneer (PR-RP-DSV)
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf-2018-0076/html
Scroll to top button