Startseite Radical transfer system in the enzymatic dehydrogenative polymerization (DHP formation) of coniferyl alcohol (CA) and three dilignols
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Radical transfer system in the enzymatic dehydrogenative polymerization (DHP formation) of coniferyl alcohol (CA) and three dilignols

  • Yasuyuki Matsushita EMAIL logo , Masaya Okayama , Dan Aoki , Sachie Yagami und Kazuhiko Fukushima
Veröffentlicht/Copyright: 13. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

No clear picture has yet been elaborated concerning the mechanism of lignin growth, and thus this topic is the focus of the present paper. Namely, the enzymatic dehydrogenative polymerization (DHP formation) of coniferyl alcohol (CA, as a monolignol) and three dilignols and their reaction kinetics were investigated. The dilignols [guaiacylglycerol-β-coniferyl ether (IβO4), dehydrodiconiferyl alcohol (IIβ5), and pinoresinol (IIIββ)] and CA as a monolignol [(3-OCD3)-coniferyl alcohol (CAOCD3)] were synthesized and subjected to enzymatic DHP formation. The dilignol derived from CAOCD3 could be identified by its higher molecular weight in comparison with the starting dilignols (IβO4, IIβ5, and IIIββ). Based on the observed consumption rate of the CA and its dilignols, it was proposed that a radical transfer system exists between the dilignols, which is generated from the CA and the starting substrates.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Adler, E. (1977) Lignin chemistry – past, present and future. Wood Sci. Technol. 11:169–218.10.1007/BF00365615Suche in Google Scholar

Aoyama, W., Sasaki, S., Matsumura, S., Mitsunaga, T., Hirai, H., Tsutsumi, Y., Nishida, T.J. (2002) Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol. Wood Sci. 48:497–504.10.1007/BF00766646Suche in Google Scholar

Boerjan, W., Ralph, J., Baucher, M. (2003) Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519–549.10.1146/annurev.arplant.54.031902.134938Suche in Google Scholar

Fournand, D., Cathala, B., Lapierre, C. (2003) Initial steps of the peroxidase-catalyzed polymerization of coniferyl alcohol and/or sinapyl aldehyde: capillary zone electrophoresis study of pH effect. Phytochemistry 62:139–146.10.1016/S0031-9422(02)00573-3Suche in Google Scholar

Freudenberg, K. (1959) Biosynthesis and constitution of lignin. Nature 183:1152–1155.10.1038/1831152a0Suche in Google Scholar PubMed

Freudenberg, K. (1968) The constitution and biosynthesis of lignin. In: Constitution and Biosynthesis of Lignin. Eds. Freudenberg, K., Neish, A.C. Springer, Berlin. pp. 47–122.10.1007/978-3-642-85981-6_2Suche in Google Scholar

Freudenberg, K., Hübner, H.H. (1952) Oxyzimtalkohole und ihre Dehydrierungs-polymerisate. Chem. Berichte 85:1181–1191.10.1002/cber.19520851213Suche in Google Scholar

Fukushima, K., Terashima, N. (1991) Heterogeneity in formation of lignin. XIV. Formation and structure of lignin differentiating xylem of Ginko biloba. Holzforschung 45:87–94.10.1515/hfsg.1991.45.2.87Suche in Google Scholar

Hatfield, R.D., Vermerris, W. (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol. 126:1351–1357.10.1104/pp.126.4.1351Suche in Google Scholar PubMed PubMed Central

Matsushita, Y., Ko, C., Aoki, D., Hashigaya, S., Yagami, S., Fukushima, K. (2015) Enzymatic dehydrogenative polymerization of monolignol dimers. J. Wood Sci. 61:608–619.10.1007/s10086-015-1513-8Suche in Google Scholar

Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., Boerjan, W. (2004a) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev. 3:29–60.10.1023/B:PHYT.0000047809.65444.a4Suche in Google Scholar

Ralph, J., Bunzel, M., Marita, J.M., Hatfield, R.D., Lu, F., Kim, H., Schatz, P.F., Grabber, J.H., Steinhart, H. (2004b) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem. Rev. 3:79–96.10.1023/B:PHYT.0000047811.13837.fbSuche in Google Scholar

Sarkanen, K.V. (1971) Precursors and their polymerisation, Chapter 4, 95–163. In: Lignins – Occurence, Formation, Structure and Reactions. Eds. Sarkanen, K.V., Ludwig, C.H. Wiley-Interscience, New-York. pp. 916.Suche in Google Scholar

Sasaki, S., Nishida, T., Tsutsumi, Y., Kondo, R. (2004) Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in β-O-4 linkage. FEBS Lett. 562:197–201.10.1016/S0014-5793(04)00224-8Suche in Google Scholar

Shigeto, J., Kiyonaga, Y., Fujita, K., Kondo, R., Tsutsumi, Y. (2013) Putative cationic cell-wall-bound peroxidase homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignification. J. Agric. Food Chem. 61:3781–3788.10.1021/jf400426gSuche in Google Scholar PubMed

Takabe, K., Fujita, M., Harada, H., Saiki, H. (1981) Lignification process of Japanese black pine (Pinus thunbergii Parl.) tracheids. Mokuzai Gakkaishi 27:813–820.Suche in Google Scholar

Takahama, U. (1995) Oxidation of hydroxycinnamic acid and hydroxycinnamyl alcohol derivatives by laccase and peroxidase. Interactions among p-hydroxyphenyl, guaiacyl and syringyl groups during the oxidation reactions. Physiol. Plant. 93:61–68.10.1034/j.1399-3054.1995.930110.xSuche in Google Scholar

Takahama, U., Oniki, T. (1994) Effects of ascorbate on the oxidation of derivatives of hydroxycinnamic acid and the mechanism of oxidation of sinapic acid by cell wall-bound peroxidases. Plant Cell Physiol. 35:593–600.10.1093/oxfordjournals.pcp.a078634Suche in Google Scholar

Takahama, U., Oniki, T. (1997) Enhancement of peroxidase-dependent oxidation of sinapyl alcohol by an apoplastic component, 4-coumaric acid ester isolated from epicotyls of Vigna angularis L. Plant Cell Physiol. 38:456–462.10.1093/oxfordjournals.pcp.a029189Suche in Google Scholar

Takahama, U., Oniki, T., Shimokawa, H. (1996) A possible mechanism for the oxidation of sinapyl alcohol by peroxidase-dependent reactions in the apoplast: enhancement of the oxidation by hydroxycinnamic acids and components of the apoplast. Plant Cell Physiol. 37:499–504.10.1093/oxfordjournals.pcp.a028972Suche in Google Scholar

Terashima, N., Fukushima, K. (1988) Heterogeneity in formation of lignin–XI: an autoradiographic study of the heterogeneous formation and structure of pine lignin. Wood Sci. Technol. 22:259–270.10.1007/BF00386021Suche in Google Scholar

Tobimatsu, Y., Takano, T., Kamitakahara, H., Nakatsubo, F. (2008) Studies on the dehydrogenative polymerizations (DHPs) of monolignol β-glycosides: Part 4. Horseradish peroxidasecatalyzed copolymerization of isoconiferin and isosyringin. Holzforschung 62:495–500.10.1515/HF.2008.093Suche in Google Scholar

Tobimatsu, Y., Takano, T., Kamitakahara, H., Nakatsubo, F. (2010) Reactivity of syringyl quinone methide intermediates in dehydrogenative polymerization. Part 2: pH effect in horseradish peroxidase-catalyzed polymerization of sinapyl alcohol. Holzforschung 64:183–192.10.1515/hf.2010.027Suche in Google Scholar

Received: 2018-03-06
Accepted: 2018-07-18
Published Online: 2018-08-13
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2018-0044/html
Button zum nach oben scrollen