Startseite Effects of wet-pressing induced fiber hornification on hydrogen bonds of cellulose and on properties of eucalyptus paper sheets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of wet-pressing induced fiber hornification on hydrogen bonds of cellulose and on properties of eucalyptus paper sheets

  • Yangmei Chen EMAIL logo , Yu Jiang , Jinquan Wan , Qitang Wu , Zebin Wei und Yongwen Ma
Veröffentlicht/Copyright: 22. Mai 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The supramolecular structure of eucalyptus pulp cellulose was studied by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and water retention value (WRV) after subjecting the pulp to pressures of 0.1, 0.2, 0.3, 0.4 and 0.5 MPa. It was interpreted from the FTIR spectra of the sheets after pressing that the amount of intermolecular hydrogen bonds (HBinter) first increased and then decreased as a function of increasing pressure, while the number of the intramolecular hydrogen bonding (HBintra) exhibited an opposite trend. In the pressed fibers, the number of HBintra O(6)H· · ·O(3′) increased by 16% compared to the un-pressed fibers, while the number of HBinter O(2)H· · ·O(6) and O(3)H· · ·O(5) decreased by 23% at 0.3 MPa. XRD analysis showed that the crystallite size corresponding to the diffraction peaks for (002) lattice planes and the crystallinity of eucalyptus fibers were the lowest at a pressure of 0.3 MPa. Pressing produced an irreversible reduction of fiber pore volume, which was manifested by reduced WRV data.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (No. 21606092), the Pearl River S and T Nova Program of Guangzhou (201710010109), China, the Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, the Ministry of Education, South China University of Technology, China, the Presidential Foundation of the College of Natural Resources and Environment, South China Agricultural University, China (No. ZHXY2015A04), and the Science and Technology Planning Project of Guangdong Province, China (20170405, 2014A020216033).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Andreasson, B., Forsström, J., Wågberg, L. (2003) The porous structure of pulp fibres with different yields and its influence on paper strength. Cellulose 10:111–123.10.1023/A:1024055406619Suche in Google Scholar

Baratieri, M., Baggio, P., Fiori, L., Grigiante, A. (2008) Biomass as an energy source: thermodynamic constraints on the performance of the conversion process. Bioresource Technol. 99:7063–7073.10.1016/j.biortech.2008.01.006Suche in Google Scholar

Carlsson, G., Lindström, T. (1984) Hornification of cellulosic fibers during wet pressing. Svensk Papperstidning 87:119–125.Suche in Google Scholar

Ciolacu, D., Kovac, J., Kokol, V. (2010) The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohyd. Res. 345:621–630.10.1016/j.carres.2009.12.023Suche in Google Scholar

Colom, X., Carrillo, F., Nogues, F., Garriga, P. (2003) Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stabil. 80:543–549.10.1016/S0141-3910(03)00051-XSuche in Google Scholar

Espinosa, E., Tarres, Q., Dominguez-Robles, J., Delga do-Aguilar, M., Mutje, P., Rodriguez, A. (2018) Recycled fibers for fluting production: the role of lignocellulosic micro/nanofibers of banana leaves. J. Clean. Prod. 172:233–238.10.1016/j.jclepro.2017.10.174Suche in Google Scholar

Giacomozzi, D.E., Joutsimo, O. (2015) Drying temperature and hornification of industrial never-dried pinus radiata pulps. 1. Strength, optical, and water holding properties. Bioresources 10:5791–5808.10.15376/biores.10.3.5791-5808Suche in Google Scholar

Gümüskaya, E., Usta, M., Kirci, H. (2003) The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym. Degrad. Stabil. 81:559–564.10.1016/S0141-3910(03)00157-5Suche in Google Scholar

Haggkvist, M., Li, T., Odberg, L. (1998) Effects of drying and pressing on the pore structure in the cellulose fibre wall studied by 1H and 2H NMR relaxation. Cellulose 5:33–49.10.1023/A:1009212628778Suche in Google Scholar

Hamzeh, Y., Najafi, S.M.H., Hubbe, M.A., Salehi, K., Firouzabadi, M.R.D. (2011) Recycling potential of unbleached and bleached chemical pulps from juvenile and mature wood of Populus deltoides. Holzforschung 66:155–161.10.1515/HF.2011.141Suche in Google Scholar

He, J., Tang, Y., Wang, S. (2007) Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data. Iran. Polym. J. 16:807–818.Suche in Google Scholar

He, Y., Zhu, B., Inoue, Y. (2004) Hydrogen bonds in polymer blends. Prog. Polym. Sci. 29:1021–1051.10.1016/j.progpolymsci.2004.07.002Suche in Google Scholar

Heinze, T., Liebert, T. (2001) Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 26:1689–1762.10.1016/S0079-6700(01)00022-3Suche in Google Scholar

Hii, C., Gregersen, O.W., Chinga-Carrasco, G., Eriksen, O., Toven, K. (2012) The web structure in relation to the furnish composition and shoe press pulse profiles during wet pressing. Nord. Pulp Pap. Res. J. 27:798–805.10.3183/npprj-2012-27-04-p798-805Suche in Google Scholar

Huang, J.W., Liu, W.D., Lai, H.L., Cheng, Y.S., Zheng, Y.Y., Li, Q., Sun, H., Kuo, C.J., Guo, R.T., Chen, C.C. (2016) Crystal structure and genetic modifications of FI-CMCase from Aspergillus aculeatus F-50. Biochem. Bioph. Res. Co. 478:565–572.10.1016/j.bbrc.2016.07.101Suche in Google Scholar PubMed

Hubbe, M.A., Venditti, R.A., Barbour, R.L., Zhang, M. (2003) Changes to unbleached kraft fibers due to drying and recycling. Prog. Pap. Recy. 12:11–20.Suche in Google Scholar

Hult, E.L., Iversen, T., Sugiyama, J. (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibers. Cellulose 10:103–110.10.1023/A:1024080700873Suche in Google Scholar

Jia, X.J., Chen, Y.W., Shi, C., Ye, Y.F., Wang, P., Zeng, X.X., Wu, T. (2013) Preparation and characterization of cellulose regenerated from phosphoric acid. J. Agr. Food Chem. 61:12405–12414.10.1021/jf4042358Suche in Google Scholar PubMed

Jing, Y., You, J., Wu, S., Xu, Y. (2004) Effect of different cellulase composition on secondary fibers morphology ultrastructure. J. Cell. Sci. Technol. 12:12–17.Suche in Google Scholar

Khantayanuwong, S. (2003) Determination of the effect of recycling treatment on pulp fiber properties by principal component analysis. Kasetsart J. (Nat. Sci.). 37:219–223.Suche in Google Scholar

Kim, S., Holtzapple, M.T. (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresource Technol. 97:583–591.10.1016/j.biortech.2005.03.040Suche in Google Scholar PubMed

Kian, L.K., Jawaid, M., Mohammad, A., Ariffin, H., Karim, Z. (2018) Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int. J. Biol. Macromol. 114:54–63.10.1016/j.ijbiomac.2018.03.065Suche in Google Scholar PubMed

Kondo, T., Sawatari, C., Manley, R.S.J., Gray, D.G. (1994) Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules 27:210–215.10.1021/ma00079a031Suche in Google Scholar

Liao, Z.D., Huang, Z.Q., Hu, H.Y., Zhang, Y.J., Tan, Y.F. (2011) Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation. Bioresource Technol. 102:7953–7958.10.1016/j.biortech.2011.05.067Suche in Google Scholar PubMed

Lovikka, V.A., Khanjani, P., Vaisanen, S., Vuorinen, T., Maloney, T.C. (2016) Porosity of wood pulp fibers in the wet and highly open dry state. Micropor. Mesopor. Mat. 234:326–335.10.1016/j.micromeso.2016.07.032Suche in Google Scholar

Luo, X.L., Zhu, J.Y., Gleisner, T., Zhan, H.Y. (2011) Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. Cellulose 18:1055–1062.10.1007/s10570-011-9541-zSuche in Google Scholar

Nishiyama, Y., Isogai, A., Okano, T., Müller, M., Chanzy, H. (1999) Intracrystalline deuteration of native cellulose. Macromolecules 32:2078–2081.10.1021/ma981563mSuche in Google Scholar

Oh, S.Y., Yoo, D.I., Shin, Y., Kim, H.C., Kim, H.Y., Chung, Y.S., Park, W.H., Youk, J.H. (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd. Res. 340:2376–2391.10.1016/j.carres.2005.08.007Suche in Google Scholar PubMed

Östlund, Å., Köhnke, T., Nordstierna, L., Nydén, M. (2010) NMR cryoporometry to study the fiber wall structure and the effect of drying. Cellulose 17:321–328.10.1007/s10570-009-9383-0Suche in Google Scholar

Pimentel, G.C., Sederholm, C.H. (1956) Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. J. Chem. Phys. 24:639–641.10.1063/1.1742588Suche in Google Scholar

Poletto, M., Pistor, V., Zeni, M., Zattera, A.J. (2011) Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polym. Degrad. Stabil. 96:679–685.10.1016/j.polymdegradstab.2010.12.007Suche in Google Scholar

Popescu, C.M.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willfor, S. (2007) Spectral characterization of eucalyptus wood. Appl. Spectrosc. 61:1168–1177.10.1366/000370207782597076Suche in Google Scholar PubMed

Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B. (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 36:23–40.10.1016/j.vibspec.2004.02.003Suche in Google Scholar

Somwang, K., Enomae, T., Onabe, F. (2002) Effect of fiber hornification in recycling on bonding potential at interfiber crossings-confocal laser-scanning microscopy. Japan Tappi J. 56:79–85.10.2524/jtappij.56.239Suche in Google Scholar

Sousa, C., Evtuguin, D.V., Amaral, J.L. (2017) Hardwood kraft pulp structural features affecting refinability. Holzforschung 71:619–624.10.1515/hf-2016-0205Suche in Google Scholar

Stone, J.E., Scallan, A.M. (1968) A structural model for the cell wall of water swollen wood pulp fibers based on their accessibility to macromolecules. Cell. Chem. Technol. 2:343–349.Suche in Google Scholar

Struszczyk, H. (1986) Modification of lignins. III. Reaction of lignosulfonates with chlorophosphazenes. J. Macromol. Sci. – Chem. 23:973–992.10.1080/00222338608081105Suche in Google Scholar

Sun, Q.N., Foston, M., Sawada D., Pingali, S.V., O’Neill, H.M., Li, H.J., Wyman, C.E., Langan, P., Pu, Y.Q., Ragauskas, A.J. (2014) Comparison of changes in cellulose ultrastructure during different pretreatments of poplar-Q. Cellulose 21:2419–2431.10.1007/s10570-014-0303-6Suche in Google Scholar

Vainio, A., Paulapuro, H. Interfiber bonding and fiber segment activation in paper. (2007) BioResources 2:442–458.Suche in Google Scholar

Wan, J.Q., Wang, Y., Ma, Y.W., Xiao, Q. (2009) Influence of pressing and drying on the microstructure of recycled plant fibers. Cell. Chem. Technol. 43:71–79.Suche in Google Scholar

Weise, U., Maloney, T., Paulapuro, H. (1996) Quantification of water in different states of interaction with wood pulp fibres. Cellulose 3:189–202.10.1007/BF02228801Suche in Google Scholar

Weiss, N.D., Thygesen, L.G., Feldy, C., Roslander, C., Gourlay, K. (2017) Biomass-water interactions correlate to recalcitrance and are intensified by pretreatment: an investigation of water constraint and retention in pretreated spruce using low field NMR and water retention value techniques. Biotechnol. Prog. 33:146–153.10.1002/btpr.2398Suche in Google Scholar PubMed

Received: 2017-12-19
Accepted: 2018-04-23
Published Online: 2018-05-22
Published in Print: 2018-10-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2017-0214/html
Button zum nach oben scrollen