Home Simultaneous pyrolysis and trimethylsilylation with N-methyl-(trimethylsilyl) trifluoroacetamide for the characterisation of lignocellulosic materials from kraft pulping
Article
Licensed
Unlicensed Requires Authentication

Simultaneous pyrolysis and trimethylsilylation with N-methyl-(trimethylsilyl) trifluoroacetamide for the characterisation of lignocellulosic materials from kraft pulping

  • Tamires O. Melo , Jéssica D.C. Tomasi , Osmar A.B. Pires , Francisco A. Marques and Fabricio A. Hansel ORCID logo EMAIL logo
Published/Copyright: June 12, 2018
Become an author with De Gruyter Brill

Abstract

Simultaneous pyrolysis and trimethylsilylation (SPyT) with N-methyl-(trimethylsilyl)trifluoroacetamide (MSTFA) was used to characterise lignocellulosic materials from pine and eucalyptus obtained by kraft pulping. This approach protects the carboxyl groups and helps preserve the original structure of phenolic products during analytical pyrolysis, and so that pyrolysis and derivatisation occur simultaneously and the fragments of underivatised compounds are also silylatated. The SPyT products are representative for the structures present in carbohydrates and lignin of the investigated materials. The method is also suited to semi-quantitative evaluation also in terms of detection of condensed lignin structures in pulps and kraft lignins.

Acknowledgements

Dayanne R. Mendes Andrade and Tiélidy A. de Morais de Lima are thanked for the technical support in the laboratories.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Funding was provided by Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA): 01.11.07.001.03.00 and 03.14.04.006.00.00.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Alves, A., Schwanninger, M., Pereira, H. (2006) Analytical pyrolysis as a direct method to determine the lignin content in wood Part 1: Comparison of pyrolysis lignin with Klason lignin. J. Anal. Appl. Pyrolysis 76:209–213.10.1016/j.jaap.2005.11.004Search in Google Scholar

Anderson, K.B., Winans, R.E. (1991) Nature and fate of natural resins in the geosphere. I. Evaluation of pyrolysis-gas chromatography mass spectrometry for the analysis of natural resins and resinites. Anal. Chem. 63:2901–2908.10.1021/ac00024a019Search in Google Scholar

Bartlett, D.J., Poulton, J.E., Butt, V.S. (1972) Hydroxylation of p-coumaric acid by illuminated chloroplasts from spinach beet leaves. FEBS Lett. 23:265–267.10.1016/0014-5793(72)80357-0Search in Google Scholar

Chakar, F.S., Ragauskas, A.J. (2004) Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20:131–141.10.1016/j.indcrop.2004.04.016Search in Google Scholar

Challinor, J.M. (1995) Characterisation of wood by pyrolysis derivatisation-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis 35:93–107.10.1016/0165-2370(95)00903-RSearch in Google Scholar

Challinor, J.M. (1996) Characterisation of wood extractives by pyrolysis-gas chromatography/mass spectrometry of quaternary ammonium hydroxide extracts. J. Anal. Appl. Pyrolysis 2370:1–13.10.1016/0165-2370(96)00937-0Search in Google Scholar

Challinor, J.M. (1989) A pyrolysis-derivatisation-gas chromatography technique for the structural elucidation of some synthetic polymers. J. Anal. Appl. Pyrolysis 16:323–333.10.1016/0165-2370(89)80015-4Search in Google Scholar

Challinor, J.M. (2001) Review: the development and applications of thermally assisted hydrolysis and methylation reactions. J. Anal. Appl. Pyrolysis 61:3–34.10.1016/S0165-2370(01)00146-2Search in Google Scholar

Chandra, J., George, N., Narayanankutty, S.K. (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym. 142:158–166.10.1016/j.carbpol.2016.01.015Search in Google Scholar PubMed

Chiantore, O., Riedo, C., Scalarone, D. (2009) Mass spectrometric analysis of products from on-line pyrolysis/silylation of plant gums used as binding media. Int. J. Mass Spectrom. 284:35–41.10.1016/j.ijms.2008.07.031Search in Google Scholar

Chinga-Carrasco, G. (2011) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res. Lett. 6:417.10.1186/1556-276X-6-417Search in Google Scholar

Constant, S., Wienk, H.L.J., Frissen, A.E., de Peinder, P., Boelens, R., van Es, D.S., Grisel, R.J.D., Weckhuysen, B.M., Huijgen, W.J.J., Gosselink, R.J.A, Bruijnincx, P.C.A. (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem. 18:2651.10.1039/C5GC03043ASearch in Google Scholar

Davin, L.B., Jourdes, M., Patten, A.M., Kim, K.-W., Vassao, D.G., Lewis, N.G. (2008) Dissection of lignin macromolecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat. Prod. Rep. 25:1015–1090.10.1039/b510386jSearch in Google Scholar

del Río, J.C., Gutiérrez, A., Hernando, M., Landín, P., Romero, J., Martínez, Á.T. (2005) Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J. Anal. Appl. Pyrolysis. 74:110–115.10.1016/j.jaap.2004.10.010Search in Google Scholar

Donike, M. (1969) N-Methyl-N-trimethylsilyl-trifluoracetamid, ein neues Silylierungsmittel aus der Reihe der silylierten Amide. J. Chromatogr. A 42:103–104.10.1016/S0021-9673(01)80592-6Search in Google Scholar

Ende, M., Luftmann, H. (1984) Unerwartete Reaktionsprodukte von N-Methyl-N-trimethylsilyltrifluoracetamid (MSTFA) mit Aldehyden. Tetrahedron 40:5167–5170.10.1016/S0040-4020(01)91265-7Search in Google Scholar

Fabbri, D., Chiavari, G. (2001) Analytical pyrolysis of carbohydrates in the presence of hexamethyldisilazane. Anal. Chim. Acta 449:271–280.10.1016/S0003-2670(01)01359-9Search in Google Scholar

Fabbri, D., Helleur, R. (1999) Characterization of the tetramethylammonium hydroxide thermochemolysis products of carbohydrates. J. Anal. Appl. Pyrolysis 49:277–293.10.1016/S0165-2370(98)00085-0Search in Google Scholar

Fabbri, D., Chiavari, G., Prati, S., Vassura, I., Vangelista, M. (2002) Gas chromatography/mass spectrometric characterisation of pyrolysis/silylation products of glucose and cellulose. Rapid Commun. Mass Spectrom. 16:2349–2355.10.1002/rcm.856Search in Google Scholar PubMed

Fabbri, D., Marynowski, L., Fabianska, M.J., Zatoń, M., Simoneit, B.R. (2008) Levoglucosan and other cellulose markers in pyrolysates of miocene lignites: geochemical and environmental implications. Environ. Sci. Technol. 2957–2963.10.1021/es7021472Search in Google Scholar PubMed

Faix, O., Meier, D., Fortmann, I. (1990) Thermal degradation products of wood. Eur. J. Wood Wood Prod. 48:281–285.10.1007/BF02626519Search in Google Scholar

Faix, O., Fortmann, I., Bremer, J., Meier, D. (1991) Thermal degradation products of wood Gas chromatographic separation and mass spectrometric characterization. Eur. J. Wood Wood Prod. 49:213–219.10.1007/BF02613278Search in Google Scholar

Filley, T.R., Hatcher, P.G., Shortle, W.C., Praseuth, R.T. (2000) The application of 13C-labelled tetramethylammonium hydroxide (13C-TMAH) thermochemolysis to the study of fungal degradation of wood. Org. Geochem. 31, 181–198.10.1016/S0146-6380(99)00159-XSearch in Google Scholar

Galletti, G.C., Bocchini, P. (1995) Pyrolysis/gas chromatography/mass spectrometry of lignocellulose. Rapid Commun. Mass Spectrom. 9:815–826.10.1002/rcm.1290090920Search in Google Scholar

Gao, M., Sun, C., Zhu, K. (2004) Thermal degradation of wood treated with guanidine compounds in air: flammability study. J. Therm. Anal. Calorim. 75:221–232.10.1023/B:JTAN.0000017344.01189.e5Search in Google Scholar

Gierer, J. (1985) Chemistry of delignification. Wood Sci. Technol. 19:289–312.10.1007/BF00350692Search in Google Scholar

Gil, A.M. (1999) Solid-state NMR studies of wood and other lignocellulosic materials. Annu. reports NMR Spectrosc. 37:75–117.10.1016/S0066-4103(08)60014-9Search in Google Scholar

González-Vila, F.J., Almendros, G., Del Río, J.C., Martın, F., Gutiérrez, A., Romero, J. (1999) Ease of delignification assessment of wood from different Eucalyptus species by pyrolysis (TMAH)-GC/MS and CP/MAS 13 C-NMR spectrometry. J. Anal. Appl. Pyrolysis 49:295–305.10.1016/S0165-2370(98)00097-7Search in Google Scholar

Gulsoy, S.K., Tufek, S. (2013) Effect of chip mixing ratio of Pinus pinaster and Populus tremula on kraft pulp and paper properties. Ind. Eng. Chem. Res. 52:2304–2308.10.1021/ie302709eSearch in Google Scholar

Klingberg, A., Odermatt, J., Meier, D. (2005) Influence of parameters on pyrolysis-GC/MS of lignin in the presence of tetramethylammonium hydroxide. J. Anal. Appl. Pyrolysis 74:104–109.10.1016/j.jaap.2004.11.023Search in Google Scholar

Kralert, P.G., Alexander, R., Kagi, R.I. (1995) An investigation of polar constituents in kerogen and coal using pyrolysis-gas chromatography-mass spectrometry with in situ methylation. Org. Geochem. 23:627–639.10.1016/0146-6380(95)00047-ISearch in Google Scholar

Kuroda, K. (2000) Pyrolysis-trimethylsilylation analysis of lignin: preferential formation of cinnamyl alcohol derivatives. J. Anal. Appl. Pyrolysis 56:79–87.10.1016/S0165-2370(00)00085-1Search in Google Scholar

Leary, G.J., Newman, R.H. (1992) Cross polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) spectroscopy. In: Methods in Lignin Chemistry. Eds. Lin, S.Y, Dence, C.W. Springer-Verlag, Hieldenberg. pp. 146–161.10.1007/978-3-642-74065-7_11Search in Google Scholar

Lima, C.F., Barbosa, L.C.A., Silva, M.N.N., Colodette, J.L., Silvério, F.O. (2015) In situ determination of the syringyl/guaiacyl ratio of residual lignin in pre-bleached eucalypt kraft pulps by analytical pyrolysis. J. Anal. Appl. Pyrolysis 112:164–172.10.1016/j.jaap.2015.02.002Search in Google Scholar

Liitiä, T.M., Maunu, S.L., Hortling, B., Toikka, M., Kilpeläinen, I. (2003) Analysis of technical lignins by two-and three-dimensional NMR spectroscopy. J. Agric. Food. Chem. 51:2136–2143.10.1021/jf0204349Search in Google Scholar

Little, J.L. (1999) Artefacts in trimethylsilyl derivatization reactions and ways to avoid them. J. Chromatogr. A 844:1–22.10.1016/S0021-9673(99)00267-8Search in Google Scholar

Lomax, J.A., Commandeur, J.M., Arisz, P.W., Boon, J.J. (1991) Characterisation of oligomers and sugar ring-cleavage products in the pyrolysate of cellulose. J. Anal. Appl. Pyrolysis 19:65–79.10.1016/0165-2370(91)80035-7Search in Google Scholar

Lourenço, A., Gominho, J., Marques, A.V., Pereira, H. (2012) Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID. Bioresour. Technol. 123:296–302.10.1016/j.biortech.2012.07.092Search in Google Scholar

Lourençon, T.V., Hansel, F.A., da Silva, T.A., Ramos, L.P., de Muniz, G.I.B., Magalhães, W.L.E. (2015) Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Sep. Purif. Technol. 154:82–88.10.1016/j.seppur.2015.09.015Search in Google Scholar

Łucejko, J.J., Zborowska, M., Modugno, F., Colombini, M.P. (2012) Analytical pyrolysis vs. classical wet chemical analysis to assess the decay of archaeological waterlogged wood. Anal. Chim. Acta 745:70–77.Search in Google Scholar

Martin, F., González-Vila, F.J., Del Rio, J.C., Verdejo, T. (1994) Pyrolysis derivatization of humic substances 1. Pyrolysis of fulvic acids in the presence of tetramethylammonium hydroxide. J. Anal. Appl. Pyrolysis 28:71–80.10.1016/0165-2370(93)00766-GSearch in Google Scholar

Martin, F., Rio, J.C., Verdejo, T. (1995) Thermally assisted hydrolysis and alkylation of lignins in the presence of tetra-alkylammonium hydroxides. J. Anal. Appl. Pyrolysis 35:1–13.10.1016/0165-2370(95)00892-ISearch in Google Scholar

Mattonai, M., Tamburini, D., Colombini, M.P., Ribechini, E. (2016) Timing in analytical pyrolysis: Py(HMDS)-GC/MS of glucose and cellulose using online micro reaction sampler. Anal. Chem. 88:9318–9325.10.1021/acs.analchem.6b02910Search in Google Scholar

Maunu, S.L. (2002) NMR studies of wood and wood products. Prog. Nucl. Magn. Reson. Spectrosc. 40:151–174.10.1016/S0079-6565(01)00041-3Search in Google Scholar

Meier, D., Faix, O. (1992) Pyrolysis-gas chromatography-mass spectrometry. Methods Lig. Chem. 177–199.10.1007/978-3-642-74065-7_13Search in Google Scholar

Melo, T.O., Marques, F.A., Hansel, F.A. (2017) Pyrolysis-gas chromatography-mass spectrometry Kováts retention index of pyrolysis products of lignocellulosic materials. J. Anal. Appl. Pyrolysis 126:332–336.10.1016/j.jaap.2017.05.013Search in Google Scholar

Mettler, M.S., Paulsen, A.D., Vlachos, D.G., Dauenhauer, P.J. (2012) Pyrolytic conversion of cellulose to fuels: levoglucosan deoxygenation via elimination and cyclization within molten biomass. Energy Environ. Sci. 5:7864–7868.10.1039/c2ee21305bSearch in Google Scholar

Moldoveanu, S.C., David, V. (2002) Chapter 18 – chemical reactions used in derivatization. In: Journal of Chromatography Library. Eds. Moidoveanu, S.C., David, V. Elsevier, Amsterdam. pp. 525–637.Search in Google Scholar

Pastorova, I., Botto, R.E., Arisz, P.W., Boon, J.J. (1994) Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydr. Res. 262:27–47.10.1016/0008-6215(94)84003-2Search in Google Scholar

Poletto, M., Zattera, A.J., Forte, M.M.C., Santana, R.M.C. (2012a) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour. Technol. 109:148–153.10.1016/j.biortech.2011.11.122Search in Google Scholar

Poletto, M., Zattera, A.J., Santana, R.M.C. (2012b) Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresour. Technol. 126:7–12.10.1016/j.biortech.2012.08.133Search in Google Scholar

Sáiz-Jiménez, C., De Leeuw, J.W. (1984) Pyrolysis-gas chromatography-mass spectrometry of isolated, synthetic and degraded lignins. Org. Geochem. 6:417–422.10.1016/0146-6380(84)90064-0Search in Google Scholar

Schwanninger, B.M., Hinterstoisser, B. (2002) Klason lignin: modifications to improve the precision of the standardized determination. Holzforschung 56:161–166.10.1515/HF.2002.027Search in Google Scholar

Shen, D.K., Gu, S., Luo, K.H., Wang, S.R., Fang, M.X. (2010) The pyrolytic degradation of wood-derived lignin from pulping process. Bioresour. Technol. 101:6136–6146.10.1016/j.biortech.2010.02.078Search in Google Scholar PubMed

Sixta, H. (2006) Pulp purification. In: Handbook of Pulp. Ed. Sixta, H. Verlag GmbH & Co. KGaA, Weinheim. pp. 933–965.10.1002/9783527619887.ch8Search in Google Scholar

Smook, G.A. Handbook for Pulp and Paper Technologists. Angus Wilde Publications, Vancouver, Bellingham, 1992.Search in Google Scholar

Tamburini, D., Łucejko, J.J., Zborowska, M., Modugno, F., Cantisani, E., Mamoňová, M., Colombini, M.P. (2017) The short-term degradation of cellulosic pulp in lake water and peat soil: a multi-analytical study from the micro to the molecular level. Int. Biodeterior. Biodegradation 116:243–259.10.1016/j.ibiod.2016.10.055Search in Google Scholar

Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M. (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110:3552–3599.10.1021/cr900354uSearch in Google Scholar PubMed

Received: 2017-11-24
Accepted: 2018-05-11
Published Online: 2018-06-12
Published in Print: 2018-10-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf-2017-0193/html
Scroll to top button