Startseite Mathematik Existence of positive weak solutions for fractional Laplacian elliptic systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence of positive weak solutions for fractional Laplacian elliptic systems

  • José Vanterler da Costa Sousa EMAIL logo , Leandro S. Tavares und Nguyen Thanh Chung
Veröffentlicht/Copyright: 19. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we focus on studying the existence of positive weak solutions for a class of fractional Laplacian systems with respect to another function ψ ( ) with multiple parameters. These systems arise in various applications, such as Lévy flights. We establish new conditions for the existence of a positive solution for the considered system using the method of sub-super solutions, which extends and complements previously known results in the literature.

MSC 2020: 35J60; 35B30; 35B40

Acknowledgements

The author warmly thanks the anonymous referee for her/his useful and nice comments on the paper.

References

[1] G. A. Afrouzi and H. Ghorbani, Positive solutions for a class of p ( x ) -Laplacian problems, Glasg. Math. J. 51 (2009), no. 3, 571–578. 10.1017/S0017089509005199Suche in Google Scholar

[2] J. Ali and R. Shivaji, Positive solutions for a class of p-Laplacian systems with multiple parameters, J. Math. Anal. Appl. 335 (2007), no. 2, 1013–1019. 10.1016/j.jmaa.2007.01.067Suche in Google Scholar

[3] J. Ali and R. Shivaji, Multiple positive solutions for a class of p-q-Laplacian systems with multiple parameters and combined nonlinear effects, Differential Integral Equations 22 (2009), no. 7–8, 669–678. 10.57262/die/1356019543Suche in Google Scholar

[4] J. Ali, R. Shivaji and M. Ramaswamy, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differential Integral Equations 19 (2006), no. 6, 669–680. 10.57262/die/1356050357Suche in Google Scholar

[5] C. Alves, A. Moussaoui and L. Tavares, An elliptic system with logarithmic nonlinearity, Adv. Nonlinear Anal. 8 (2019), no. 1, 928–945. 10.1515/anona-2017-0200Suche in Google Scholar

[6] D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed., Cambridge Stud. Adv. Math. 116, Cambridge University, Cambridge, 2009. 10.1017/CBO9780511809781Suche in Google Scholar

[7] J. Bertoin, Lévy processes, Cambridge Tracts in Mathematics 121, Cambridge University Press, Cambridge, 1996. Suche in Google Scholar

[8] C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 1, 39–71. 10.1017/S0308210511000175Suche in Google Scholar

[9] K. K. Brustad, Superposition in the p-Laplace equation, Nonlinear Anal. 158 (2017), 23–31. 10.1016/j.na.2017.04.004Suche in Google Scholar

[10] L. Caffarelli, Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations, Abel Symp. 7, Springer, Heidelberg (2012), 37–52. 10.1007/978-3-642-25361-4_3Suche in Google Scholar

[11] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7–9, 1245–1260. 10.1080/03605300600987306Suche in Google Scholar

[12] J. M. Carcione and F. Mainardi, On the relation between sources and initial conditions for the wave and diffusion equations, Comput. Math. Appl. 73 (2017), no. 6, 906–913. 10.1016/j.camwa.2016.04.019Suche in Google Scholar

[13] W. Chen and C. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math. 335 (2018), 735–758. 10.1016/j.aim.2018.07.016Suche in Google Scholar

[14] W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math. 308 (2017), 404–437. 10.1016/j.aim.2016.11.038Suche in Google Scholar

[15] W. Chen, Y. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal. 272 (2017), no. 10, 4131–4157. 10.1016/j.jfa.2017.02.022Suche in Google Scholar

[16] W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations 260 (2016), no. 5, 4758–4785. 10.1016/j.jde.2015.11.029Suche in Google Scholar

[17] M. Chhetri, P. Girg and E. Hollifield, Existence of positive solutions for fractional Laplacian equations: Theory and numerical experiments, Electron. J. Differential Equations 2020 (2020), Paper No. 81. 10.58997/ejde.2020.81Suche in Google Scholar

[18] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton, 2004. Suche in Google Scholar

[19] R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal. 39 (2000), no. 5, 559–568. 10.1016/S0362-546X(98)00221-1Suche in Google Scholar

[20] R. Dhanya and S. Tiwari, A multiparameter fractional Laplace problem with semipositone nonlinearity, Commun. Pure Appl. Anal. 20 (2021), no. 12, 4043–4061. 10.3934/cpaa.2021143Suche in Google Scholar

[21] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. 10.1016/j.bulsci.2011.12.004Suche in Google Scholar

[22] G. C. G. dos Santos, G. Figueiredo and J. R. S. Silva, Multiplicity of positive solutions for an anisotropic problem via sub-supersolution method and mountain pass theorem, J. Convex Anal. 27 (2020), no. 4, 1363–1374. Suche in Google Scholar

[23] Y. Fang and D. Tang, Method of sub-super solutions for fractional elliptic equations, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), no. 8, 3153–3165. 10.3934/dcdsb.2017212Suche in Google Scholar

[24] A. Fernandez, J. E. Restrepo and J.-D. Djida, On the fractional Laplacian of a function with respect to another function, Math. Methods Appl. Sci. 47 (2024), no. 18, 14079–14110. 10.1002/mma.10256Suche in Google Scholar

[25] G. Figueiredo and J. R. S. Silva, Solutions to an anisotropic system via sub-supersolution method and mountain pass theorem, Electron. J. Qual. Theory Differ. Equ. 2019 (2019), Paper No. 46. 10.14232/ejqtde.2019.1.46Suche in Google Scholar

[26] R. Guefaifia and S. Boulaaras, Subsuper solutions method for elliptic systems involving ( p 1 , , p m ) Laplacian operator, Math. Methods Appl. Sci. 43 (2020), no. 7, 4191–4199. 10.1002/mma.6183Suche in Google Scholar

[27] R. Guefaifia, S. Boulaaras and F. Kamache, On the existence of three solutions of Dirichlet fractional systems involving the p-Laplacian with Lipschitz nonlinearity, Bound. Value Probl. 2020 (2020), Paper No. 131. 10.1186/s13661-020-01429-xSuche in Google Scholar

[28] D. D. Hai and R. Shivaji, An existence result on positive solutions for a class of p-Laplacian systems, Nonlinear Anal. 56 (2004), no. 7, 1007–1010. 10.1016/j.na.2003.10.024Suche in Google Scholar

[29] A. Hamydy, M. Massar and N. Tsouli, Blow-up solutions to a ( p , q ) -Laplacian system with gradient term, Appl. Math. Lett. 25 (2012), no. 4, 745–751. 10.1016/j.aml.2011.10.014Suche in Google Scholar

[30] H. Hassani, J. A. Tenreiro Machado, Z. Avazzadeh and E. Naraghirad, Generalized shifted Chebyshev polynomials: Solving a general class of nonlinear variable order fractional PDE, Commun. Nonlinear Sci. Numer. Simul. 85 (2020), Article ID 105229. 10.1016/j.cnsns.2020.105229Suche in Google Scholar

[31] E. K. Lee, R. Shivaji and J. Ye, Positive solutions for elliptic equations involving nonlinearities with falling zeroes, Appl. Math. Lett. 22 (2009), no. 6, 846–851. 10.1016/j.aml.2008.08.020Suche in Google Scholar

[32] Y. Li and P. Ma, Symmetry of solutions for a fractional system, Sci. China Math. 60 (2017), no. 10, 1805–1824. 10.1007/s11425-016-0231-xSuche in Google Scholar

[33] G. Molica Bisci, V. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia Math. Appl. 162, Cambridge University, Cambridge, 2016. 10.1017/CBO9781316282397Suche in Google Scholar

[34] S. H. Rasouli, On a fractional reaction-diffusion models arising in population dynamics, preprint (2021), https://arxiv.org/abs/2101.03496. Suche in Google Scholar

[35] S. Rasouli, On a mathematical model of thermal explosion with multiple parameters and nonlinear boundary conditions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 28 (2021), no. 2, 145–152. Suche in Google Scholar

[36] X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat. 60 (2016), no. 1, 3–26. 10.5565/PUBLMAT_60116_01Suche in Google Scholar

[37] L. S. Tavares, Multiple solutions for a system involving an anisotropic variable exponent operator, Bound. Value Probl. 2022 (2022), Paper No. 24. 10.1186/s13661-022-01605-1Suche in Google Scholar

[38] L. S. Tavares, Multiplicity of solutions for an anisotropic variable exponent problem, Bound. Value Probl. 2022 (2022), Paper No. 10. 10.1186/s13661-022-01591-4Suche in Google Scholar

[39] L. S. Tavares and J. Vanterler da C. Sousa, Multiplicity results for a system involving the p ( x ) -Laplacian operator, Appl. Anal. 102 (2023), no. 5, 1271–1280. 10.1080/00036811.2021.1979226Suche in Google Scholar

[40] L. S. Tavares and J. Vanterler da C. Sousa, Solutions for a nonhomogeneous p&q-Laplacian problem via variational methods and sub-supersolution technique, Opuscula Math. 43 (2023), no. 4, 603–613. 10.7494/OpMath.2023.43.4.603Suche in Google Scholar

[41] J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 60 (2018), 72–91. 10.1016/j.cnsns.2018.01.005Suche in Google Scholar

[42] J. Vanterler da C. Sousa and E. Capelas de Oliveira, Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett. 81 (2018), 50–56. 10.1016/j.aml.2018.01.016Suche in Google Scholar

[43] J. Vanterler da C. Sousa, E. Capelas de Oliveira and L. A. Magna, Fractional calculus and the ESR test, AIMS Math. 2 (2017), no. 4, 692–705. 10.3934/Math.2017.4.692Suche in Google Scholar

[44] J. Vanterler da C. Sousa, M. N. N. dos Santos, L. A. Magna and E. Capelas de Oliveira, Validation of a fractional model for erythrocyte sedimentation rate, Comput. Appl. Math. 37 (2018), no. 5, 6903–6919. 10.1007/s40314-018-0717-0Suche in Google Scholar

[45] J. Vanterler da C. Sousa, K. D. Kucche and E. C. de Oliveira, Stability of ψ-Hilfer impulsive fractional differential equations, Appl. Math. Lett. 88 (2019), 73–80. 10.1016/j.aml.2018.08.013Suche in Google Scholar

[46] K. C. Vicente de Sousa and L. S. Tavares, Multiple solutions for a class of problems involving the p ( x ) -Laplacian operator, Appl. Anal. 101 (2022), no. 15, 5415–5423. 10.1080/00036811.2021.1892081Suche in Google Scholar

Received: 2025-01-10
Revised: 2025-03-02
Accepted: 2025-03-18
Published Online: 2025-06-19

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2049/pdf
Button zum nach oben scrollen